Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(2): 1455-1466, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166210

RESUMEN

The enzyme FeFe-hydrogenase catalyzes H2 evolution and oxidation at an active site that consists of a [4Fe-4S] cluster bridged to a [Fe2(CO)3(CN)2(azadithiolate)] subsite. Previous investigations of its mechanism were mostly conducted on a few "prototypical" FeFe-hydrogenases, such as that from Chlamydomonas reinhardtii(Cr HydA1), but atypical hydrogenases have recently been characterized in an effort to explore the diversity of this class of enzymes. We aim at understanding why prototypical hydrogenases are active in either direction of the reaction in response to a small deviation from equilibrium, whereas the homologous enzyme from Thermoanaerobacter mathranii (Tam HydS) shows activity only under conditions of very high driving force, a behavior that was referred to as "irreversible catalysis". We follow up on previous spectroscopic studies and recent developments in the kinetic modeling of bidirectional reactions to investigate and compare the catalytic cycles of Cr HydA1 and Tam HydS under conditions of direct electron transfer with an electrode. We compare the hypothetical catalytic cycles described in the literature, and we show that the observed changes in catalytic activity as a function of potential, pH, and H2 concentration can be explained with the assumption that the same catalytic mechanism applies. This helps us identify which variations in properties of the catalytic intermediates give rise to the distinct "reversible" or "irreversible" catalytic behaviors.


Asunto(s)
Chlamydomonas reinhardtii , Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Oxidación-Reducción , Transporte de Electrón , Análisis Espectral , Hidrógeno/química
2.
Chem Sci ; 14(13): 3682-3692, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006680

RESUMEN

[FeFe] hydrogenases are exceptionally active catalysts for the interconversion of molecular hydrogen with protons and electrons. Their active site, the H-cluster, is composed of a [4Fe-4S] cluster covalently linked to a unique [2Fe] subcluster. These enzymes have been extensively studied to understand how the protein environment tunes the properties of the Fe ions for efficient catalysis. The sensory [FeFe] hydrogenase (HydS) from Thermotoga maritima has low activity and displays a very positive redox potential for the [2Fe] subcluster compared to that of the highly active prototypical enzymes. Using site directed mutagenesis, we investigate how second coordination sphere interactions of the protein environment with the H-cluster in HydS influence the catalytic, spectroscopic and redox properties of the H-cluster. In particular, mutation of the non-conserved serine 267, situated between the [4Fe-4S] and [2Fe] subclusters, to methionine (conserved in prototypical catalytic enzymes) gave a dramatic decrease in activity. Infra-red (IR) spectroelectrochemistry revealed a 50 mV lower redox potential for the [4Fe-4S] subcluster in the S267M variant. We speculate that this serine forms a hydrogen bond to the [4Fe-4S] subcluster, increasing its redox potential. These results demonstrate the importance of the secondary coordination sphere in tuning the catalytic properties of the H-cluster in [FeFe] hydrogenases and reveal a particularly important role for amino acids interacting with the [4Fe-4S] subcluster.

3.
Chem Sci ; 14(11): 2826-2838, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36937599

RESUMEN

[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.

4.
ACS Appl Mater Interfaces ; 14(41): 46421-46426, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36194638

RESUMEN

The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.


Asunto(s)
Monóxido de Carbono , Formiato Deshidrogenasas , Formiato Deshidrogenasas/química , Monóxido de Carbono/química , Dióxido de Carbono/química , Polímeros , Instalación Eléctrica , Electrodos , Oxidación-Reducción
5.
Elife ; 112022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36018003

RESUMEN

Electron bifurcation is a fundamental energy conservation mechanism in nature in which two electrons from an intermediate-potential electron donor are split so that one is sent along a high-potential pathway to a high-potential acceptor and the other is sent along a low-potential pathway to a low-potential acceptor. This process allows endergonic reactions to be driven by exergonic ones and is an alternative, less recognized, mechanism of energy coupling to the well-known chemiosmotic principle. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron bifurcation in HydABC remains enigmatic in spite of intense research efforts over the last few years. Structural information may provide the basis for a better understanding of spectroscopic and functional information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure shows a heterododecamer composed of two independent 'halves' each made of two strongly interacting HydABC heterotrimers connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and for proton reduction. We identified two conformations of a flexible iron-sulfur cluster domain: a 'closed bridge' and an 'open bridge' conformation, where a Zn2+ site may act as a 'hinge' allowing domain movement. Based on these structural revelations, we propose a possible mechanism of electron bifurcation in HydABC where the flavin mononucleotide serves a dual role as both the electron bifurcation center and as the NAD+ reduction/NADH oxidation site.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Proteínas Bacterianas/metabolismo , Electrones , Ferredoxinas/química , Ferredoxinas/metabolismo , Mononucleótido de Flavina/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , NAD/metabolismo , Oxidación-Reducción , Protones , Azufre/metabolismo
6.
J Phys Chem Lett ; 13(25): 5986-5990, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35736652

RESUMEN

[FeFe] hydrogenases are highly active catalysts for hydrogen conversion. Their active site has two components: a [4Fe-4S] electron relay covalently attached to the H2 binding site and a diiron cluster ligated by CO, CN-, and 2-azapropane-1,3-dithiolate (ADT) ligands. Reduction of the [4Fe-4S] site was proposed to be coupled with protonation of one of its cysteine ligands. Here, we used time-resolved infrared (TRIR) spectroscopy on the [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1) containing a propane-1,3-dithiolate (PDT) ligand instead of the native ADT ligand. The PDT modification does not affect the electron transfer step to [4Fe-4S]H but prevents the enzyme from proceeding further through the catalytic cycle. We show that the rate of the first electron transfer step is independent of the pH, supporting a simple electron transfer rather than a proton-coupled event. These results have important implications for our understanding of the catalytic mechanism of [FeFe] hydrogenases and highlight the utility of TRIR.


Asunto(s)
Chlamydomonas reinhardtii , Hidrogenasas , Chlamydomonas reinhardtii/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Hidrógeno/química , Concentración de Iones de Hidrógeno , Hidrogenasas/química , Ligandos , Protones , Análisis Espectral
7.
J Biol Inorg Chem ; 27(3): 345-355, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35258679

RESUMEN

Hydrogenases are metalloenzymes that catalyze the reversible oxidation of molecular hydrogen into protons and electrons. For this purpose, [FeFe]-hydrogenases utilize a hexanuclear iron cofactor, the H-cluster. This biologically unique cofactor provides the enzyme with outstanding catalytic activities, but it is also highly oxygen sensitive. Under in vitro conditions, oxygen stable forms of the H-cluster denoted Htrans and Hinact can be generated via treatment with sulfide under oxidizing conditions. Herein, we show that an Htrans-like species forms spontaneously under intracellular conditions on a time scale of hours, concurrent with the cells ceasing H2 production. Addition of cysteine or sulfide during the maturation promotes the formation of this H-cluster state. Moreover, it is found that formation of the observed Htrans-like species is influenced by both steric factors and proton transfer, underscoring the importance of outer coordination sphere effects on H-cluster reactivity.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Oxígeno/química , Protones , Sulfuros
8.
J Am Chem Soc ; 144(6): 2637-2656, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119853

RESUMEN

Herein, we study the mechanism of iron-catalyzed direct synthesis of unprotected aminoethers from olefins by a hydroxyl amine derived reagent using a wide range of analytical and spectroscopic techniques (Mössbauer, Electron Paramagnetic Resonance, Ultra-Violet Visible Spectroscopy, X-ray Absorption, Nuclear Resonance Vibrational Spectroscopy, and resonance Raman) along with high-level quantum chemical calculations. The hydroxyl amine derived triflic acid salt acts as the "oxidant" as well as "amino" group donor. It activates the high-spin Fe(II) (St = 2) catalyst [Fe(acac)2(H2O)2] (1) to generate a high-spin (St = 5/2) intermediate (Int I), which decays to a second intermediate (Int II) with St = 2. The analysis of spectroscopic and computational data leads to the formulation of Int I as [Fe(III)(acac)2-N-acyloxy] (an alkyl-peroxo-Fe(III) analogue). Furthermore, Int II is formed by N-O bond homolysis. However, it does not generate a high-valent Fe(IV)(NH) species (a Fe(IV)(O) analogue), but instead a high-spin Fe(III) center which is strongly antiferromagnetically coupled (J = -524 cm-1) to an iminyl radical, [Fe(III)(acac)2-NH·], giving St = 2. Though Fe(NH) complexes as isoelectronic surrogates to Fe(O) functionalities are known, detection of a high-spin Fe(III)-N-acyloxy intermediate (Int I), which undergoes N-O bond cleavage to generate the active iron-nitrogen intermediate (Int II), is unprecedented. Relative to Fe(IV)(O) centers, Int II features a weak elongated Fe-N bond which, together with the unpaired electron density along the Fe-N bond vector, helps to rationalize its propensity for N-transfer reactions onto styrenyl olefins, resulting in the overall formation of aminoethers. This study thus demonstrates the potential of utilizing the iron-coordinated nitrogen-centered radicals as powerful reactive intermediates in catalysis.

9.
J Am Chem Soc ; 143(43): 18159-18171, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34668697

RESUMEN

[FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H2). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) covalently attached to a unique [2Fe] subcluster ([2Fe]H), where both sites are redox active. Heterolytic splitting and formation of H2 takes place at [2Fe]H, while [4Fe-4S]H stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state Hox, named HoxH, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. HoxH was previously suggested to have a protonated [4Fe-4S]H. Here, we show that HoxH forms by simple addition of sodium sulfite (Na2SO3, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO2) is the species involved. Spectroscopy supports binding at or near [4Fe-4S]H, causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that HoxH and its one-electron reduced counterpart Hred'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states Hox-DTi and Hred-DTi. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.


Asunto(s)
Biocatálisis , Ditionita/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Sustancias Reductoras/química , Proteínas Algáceas/química , Proteínas Bacterianas/química , Chlamydomonas reinhardtii/enzimología , Clostridium/enzimología , Desulfovibrio desulfuricans/enzimología , Hidrógeno/química , Oxidación-Reducción , Sulfitos/química , Dióxido de Azufre/química
10.
J Am Chem Soc ; 143(22): 8237-8243, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043346

RESUMEN

[FeFe] hydrogenases are highly active catalysts for the interconversion of molecular hydrogen with protons and electrons. Here, we use a combination of isotopic labeling, 57Fe nuclear resonance vibrational spectroscopy (NRVS), and density functional theory (DFT) calculations to observe and characterize the vibrational modes involving motion of the 2-azapropane-1,3-dithiolate (ADT) ligand bridging the two iron sites in the [2Fe]H subcluster. A -13C2H2- ADT labeling in the synthetic diiron precursor of [2Fe]H produced isotope effects observed throughout the NRVS spectrum. The two precursor isotopologues were then used to reconstitute the H-cluster of [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1), and NRVS was measured on samples poised in the catalytically crucial Hhyd state containing a terminal hydride at the distal Fe site. The 13C2H isotope effects were observed also in the Hhyd spectrum. DFT simulations of the spectra allowed identification of the 57Fe normal modes coupled to the ADT ligand motions. Particularly, a variety of normal modes involve shortening of the distance between the distal Fe-H hydride and ADT N-H bridgehead hydrogen, which may be relevant to the formation of a transition state on the way to H2 formation.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Isótopos de Carbono , Teoría Funcional de la Densidad , Deuterio , Hidrógeno/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Marcaje Isotópico , Conformación Molecular , Vibración
11.
Nat Catal ; 4(3): 251-258, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33842839

RESUMEN

Efficient electrocatalytic energy conversion requires the devices to function reversibly, i.e. deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2'-viologen modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.

12.
J Biol Inorg Chem ; 26(1): 93-108, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544225

RESUMEN

The Schizosaccharomyces pombe Asp1 protein is a bifunctional kinase/pyrophosphatase that belongs to the highly conserved eukaryotic diphosphoinositol pentakisphosphate kinase PPIP5K/Vip1 family. The N-terminal Asp1 kinase domain generates specific high-energy inositol pyrophosphate (IPP) molecules, which are hydrolyzed by the C-terminal Asp1 pyrophosphatase domain (Asp1365-920). Thus, Asp1 activities regulate the intracellular level of a specific class of IPP molecules, which control a wide number of biological processes ranging from cell morphogenesis to chromosome transmission. Recently, it was shown that chemical reconstitution of Asp1371-920 leads to the formation of a [2Fe-2S] cluster; however, the biological relevance of the cofactor remained under debate. In this study, we provide evidence for the presence of the Fe-S cluster in Asp1365-920 inside the cell. However, we show that the Fe-S cluster does not influence Asp1 pyrophosphatase activity in vitro or in vivo. Characterization of the as-isolated protein by electronic absorption spectroscopy, mass spectrometry, and X-ray absorption spectroscopy is consistent with the presence of a [2Fe-2S]2+ cluster in the enzyme. Furthermore, we have identified the cysteine ligands of the cluster. Overall, our work reveals that Asp1 contains an Fe-S cluster in vivo that is not involved in its pyrophosphatase activity.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas Hierro-Azufre/química , Pirofosfatasas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Biocatálisis , Cisteína/química , Proteínas del Citoesqueleto/genética , Proteínas Hierro-Azufre/genética , Enzimas Multifuncionales/química , Enzimas Multifuncionales/genética , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pirofosfatasas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
13.
ACS Synth Biol ; 9(12): 3400-3407, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33186033

RESUMEN

In vivo expression of metalloproteins requires specific metal trafficking and incorporation machinery inside the cell. Synthetic designed metalloproteins are typically purified without the target metal, which is subsequently introduced through in vitro reconstitution. The extra step complicates protein optimization by high-throughput library screening or laboratory evolution. We demonstrate that a designed coiled-coil iron-sulfur protein (CCIS) assembles robustly with [4Fe-4S] clusters in vivo. While in vitro reconstitution produces a mixture of oligomers that depends on solution conditions, in vivo production generates a stable homotrimer coordinating a single, diamagnetic [4Fe-4S]2+ cluster. The multinuclear cluster of in vivo assembled CCIS is more resistant to degradation by molecular oxygen. Only one of the two metal coordinating half-sites is required in vivo, indicating specificity of molecular recognition in recruitment of the metal cluster. CCIS, unbiased by evolution, is a unique platform to examine iron-sulfur protein biogenesis and develop synthetic multinuclear oxidoreductases.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Ingeniería de Proteínas/métodos , Secuencias de Aminoácidos , Dicroismo Circular , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutagénesis , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Conformación Proteica en Hélice alfa
14.
J Phys Chem B ; 124(40): 8750-8760, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32924491

RESUMEN

Oxidoreductase enzymes often perform technologically useful chemical transformations using abundant metal cofactors with high efficiency under ambient conditions. The understanding of the catalytic mechanism of these enzymes is, however, highly dependent on the availability of well-characterized and optimized time-resolved analytical techniques. We have developed an approach for rapidly injecting electrons into a catalytic system using a photoactivated nanomaterial in combination with a range of redox mediators to produce a potential jump in solution, which then initiates turnover via electron transfer (ET) to the catalyst. The ET events at the nanomaterial-mediator-catalyst interfaces are, however, highly sensitive to the experimental conditions such as photon flux, relative concentrations of system components, and pH. Here, we present a systematic optimization of these experimental parameters for a specific catalytic system, namely, [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1). The developed strategies can, however, be applied in the study of a wide variety of oxidoreductase enzymes. Our potential jump system consists of CdSe/CdS core-shell nanorods as a photosensitizer and a series of substituted bipyridinium salts as mediators with redox potentials in the range from -550 to -670 mV (vs SHE). With these components, we screened the effect of pH, mediator concentration, protein concentration, photosensitizer concentration, and photon flux on steady-state photoreduction and hydrogen production as well as ET and potential jump efficiency. By manipulating these experimental conditions, we show the potential of simple modifications to improve the tunability of the potential jump for application to study oxidoreductases.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Transporte de Electrón , Electrones , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Rayos Láser , Oxidación-Reducción , Oxidorreductasas
15.
Chem Commun (Camb) ; 56(69): 9958-9961, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32789390

RESUMEN

[FeFe] hydrogenases are highly active hydrogen conversion catalysts but are notoriously sensitive to oxidative damage. Redox hydrogels have been used for protecting hydrogenases from both high potential inactivation and oxygen inactivation under turnover conditions. However, [FeFe] hydrogenase containing redox hydrogels must be fabricated under strict anoxic conditions. Sulfide coordination at the active center of the [FeFe] hydrogenase from Desulfovibrio desulfuricans protects this enzyme from oxygen in an inactive state, which can be reactivated upon reduction. Here, we show that this oxygen-stable inactive form of the hydrogenase can be reactivated in a redox hydrogel enabling practical use of this highly O2 sensitive enzyme without the need for anoxic conditions.


Asunto(s)
Hidrogeles/química , Hidrogenasas/metabolismo , Sulfuros/química , Biocatálisis , Desulfovibrio desulfuricans/enzimología , Estabilidad de Enzimas , Hidrogenasas/química , Oxidación-Reducción , Oxígeno/química
16.
Angew Chem Int Ed Engl ; 59(38): 16786-16794, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32488975

RESUMEN

[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2 -stable state called Hinact . To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Šcrystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in-depth spectroscopic characterization by X-ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2 -stable hydrogenases and molecular catalysts.


Asunto(s)
Clostridium beijerinckii/enzimología , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Azufre/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxígeno/química , Espectrofotometría Infrarroja , Espectrometría Raman , Azufre/química , Espectroscopía de Absorción de Rayos X
17.
Angew Chem Int Ed Engl ; 59(38): 16506-16510, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32432842

RESUMEN

The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual-gas diffusion electrode H2 /O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer-based high-current-density H2 -oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm-2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer-based biofuel cell with outstanding power densities of 5.4 mW cm-2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2 .


Asunto(s)
Biocombustibles , Desulfovibrio desulfuricans/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Polímeros/metabolismo , Fuentes de Energía Bioeléctrica , Desulfovibrio desulfuricans/química , Desulfovibrio desulfuricans/enzimología , Difusión , Electrodos , Hidrógeno/química , Hidrogenasas/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Polímeros/química
18.
J Phys Chem Lett ; 11(12): 4597-4602, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32420744

RESUMEN

The active site of [FeFe] hydrogenase features a binuclear iron cofactor Fe2ADT(CO)3(CN)2, where ADT represents the bridging ligand aza-propane-dithiolate. The terminal diatomic ligands all coordinate in a basal configuration, and one CO bridges the two irons leaving an open coordination site at which the hydrogen species and the competitive inhibitor CO bind. Externally supplied CO is expected to coordinate in an apical configuration. However, an alternative configuration has been proposed in which, due to ligand rotation, the CN- bound to the distal Fe becomes apical. Using selective 13C isotope labeling of the CN- and COext ligands in combination with pulsed 13C electron-nuclear-nuclear triple resonance spectroscopy, spin polarization effects are revealed that, according to density functional theory calculations, are consistent with only the "unrotated" apical COext configuration.


Asunto(s)
Monóxido de Carbono/química , Complejos de Coordinación/química , Inhibidores Enzimáticos/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Hierro/química , Proteínas Algáceas/antagonistas & inhibidores , Proteínas Algáceas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Isótopos de Carbono/química , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Clostridium/enzimología , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Ligandos , Modelos Químicos , Estructura Molecular
19.
Chem Rev ; 120(12): 5005-5081, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32237739

RESUMEN

Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.


Asunto(s)
Nitrogenasa/metabolismo , Metales Pesados/química , Metales Pesados/metabolismo , Modelos Moleculares , Nitrogenasa/química , Análisis Espectral
20.
J Biol Inorg Chem ; 25(1): 135-149, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31823008

RESUMEN

The heterotrimeric electron-bifurcating [FeFe] hydrogenase (HydABC) from Thermotoga maritima (Tm) couples the endergonic reduction of protons (H+) by dihydronicotinamide adenine dinucleotide (NADH) (∆G0 ≈ 18 kJ mol-1) to the exergonic reduction of H+ by reduced ferredoxin (Fdred) (∆G0 ≈ - 16 kJ mol-1). The specific mechanism by which HydABC functions is not understood. In the current study, we describe the biochemical and spectroscopic characterization of TmHydABC recombinantly produced in Escherichia coli and artificially maturated with a synthetic diiron cofactor. We found that TmHydABC catalyzed the hydrogen (H2)-dependent reduction of nicotinamide adenine dinucleotide (NAD+) in the presence of oxidized ferredoxin (Fdox) at a rate of ≈17 µmol NADH min-1 mg-1. Our data suggest that only one flavin is present in the enzyme and is not likely to be the site of electron bifurcation. FTIR and EPR spectroscopy, as well as FTIR spectroelectrochemistry, demonstrated that the active site for H2 conversion, the H-cluster, in TmHydABC behaves essentially the same as in prototypical [FeFe] hydrogenases, and is most likely also not the site of electron bifurcation. The implications of these results are discussed with respect to the current hypotheses on the electron bifurcation mechanism of [FeFe] hydrogenases. Overall, the results provide insight into the electron-bifurcating mechanism and present a well-defined system for further investigations of this fascinating class of [FeFe] hydrogenases.


Asunto(s)
Hidrogenasas/química , Proteínas Hierro-Azufre/química , Catálisis , Electrones , Oxidación-Reducción , Análisis Espectral/métodos , Thermotoga maritima/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...