Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38313254

RESUMEN

Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.

2.
Commun Biol ; 4(1): 1025, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471224

RESUMEN

Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.


Asunto(s)
Axones/metabolismo , Proteína 4 Similar a ELAV/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína FUS de Unión a ARN/genética , Animales , Línea Celular , Proteína 4 Similar a ELAV/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Mutación , Proteína FUS de Unión a ARN/metabolismo
3.
Sci Adv ; 7(30)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290090

RESUMEN

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones , Mutación , Biosíntesis de Proteínas , Proteína FUS de Unión a ARN/genética
4.
EMBO J ; 40(14): e100715, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34152608

RESUMEN

Clearance of mitochondria following damage is critical for neuronal homeostasis. Here, we investigate the role of Miro proteins in mitochondrial turnover by the PINK1/Parkin mitochondrial quality control system in vitro and in vivo. We find that upon mitochondrial damage, Miro is promiscuously ubiquitinated on multiple lysine residues. Genetic deletion of Miro or block of Miro1 ubiquitination and subsequent degradation lead to delayed translocation of the E3 ubiquitin ligase Parkin onto damaged mitochondria and reduced mitochondrial clearance in both fibroblasts and cultured neurons. Disrupted mitophagy in vivo, upon post-natal knockout of Miro1 in hippocampus and cortex, leads to a dramatic increase in mitofusin levels, the appearance of enlarged and hyperfused mitochondria and hyperactivation of the integrated stress response (ISR). Altogether, our results provide new insights into the central role of Miro1 in the regulation of mitochondrial homeostasis and further implicate Miro1 dysfunction in the pathogenesis of human neurodegenerative disease.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia/fisiología , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
5.
Front Genet ; 11: 562445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329699

RESUMEN

Transcriptomics is a developing field with new methods of analysis being produced which may hold advantages in price, accuracy, or information output. QuantSeq is a form of 3' sequencing produced by Lexogen which aims to obtain similar gene-expression information to RNA-seq with significantly fewer reads, and therefore at a lower cost. QuantSeq is also able to provide information on differential polyadenylation. We applied both QuantSeq at low read depth and total RNA-seq to the same two sets of mouse spinal cord RNAs, each comprised by four controls and four mutants related to the neurodegenerative disease amyotrophic lateral sclerosis. We found substantial differences in which genes were found to be significantly differentially expressed by the two methods. Some of this difference likely due to the difference in number of reads between our QuantSeq and RNA-seq data. Other sources of difference can be explained by the differences in the way the two methods handle genes with different primary transcript lengths and how likely each method is to find a gene to be differentially expressed at different levels of overall gene expression. This work highlights how different methods aiming to assess expression difference can lead to different results.

6.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32479602

RESUMEN

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Homeostasis/genética , Proteína FUS de Unión a ARN/genética , Animales , Citoplasma/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Intrones/genética , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Mutación/genética , Empalme del ARN/genética , Superóxido Dismutasa-1/genética , Proteína que Contiene Valosina/genética
7.
EMBO Rep ; 21(2): e49865, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31894645

RESUMEN

Peroxisomes are essential for a number of cellular functions, including reactive oxygen species metabolism, fatty acid ß-oxidation and lipid synthesis. To ensure optimal functionality, peroxisomal size, shape and number must be dynamically maintained; however, many aspects of how this is regulated remain poorly characterised. Here, we show that the localisation of Miro1 and Miro2-outer mitochondrial membrane proteins essential for mitochondrial trafficking-to peroxisomes is not required for basal peroxisomal distribution and long-range trafficking, but rather for the maintenance of peroxisomal size and morphology through peroxisomal fission. Mechanistically, this is achieved by Miro negatively regulating Drp1-dependent fission, a function that is shared with the mitochondria. We further find that the peroxisomal localisation of Miro is regulated by its first GTPase domain and is mediated by an interaction through its transmembrane domain with the peroxisomal-membrane protein chaperone, Pex19. Our work highlights a shared regulatory role of Miro in maintaining the morphology of both peroxisomes and mitochondria, supporting a crosstalk between peroxisomal and mitochondrial biology.


Asunto(s)
Proteínas Mitocondriales , Proteínas de Unión al GTP rho , Animales , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
8.
Semin Cell Dev Biol ; 99: 193-201, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31132467

RESUMEN

TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS) are RNA binding proteins (RBPs) primarily located in the nucleus, and involved in numerous aspects of RNA metabolism. Both proteins can be found to be depleted from the nucleus and accumulated in cytoplasmic inclusions in two major neurodegenerative conditions, amyotrophic lateral sclerosis and frontotemporal dementia. Recent evidences suggest that, in addition to their nuclear functions, both TDP-43 and FUS are involved in multiple processes in the cytoplasm, including mRNA stability and transport, translation, the stress response, mitochondrial function and autophagy regulation. Here, we review the most recent advances in understanding their functions in the cytoplasm and how these are affected in disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Humanos
9.
Trends Neurosci ; 43(1): 1-2, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31744630

RESUMEN

Axonal transport is critical for neuronal homeostasis and relies on motor complexes bound to cargoes via specific adaptors. However, the mechanisms responsible for the spatiotemporal regulation of axonal transport are not completely understood. A recent study by Liao et al. contributes to filling this gap by reporting that RNA granules 'hitchhike' on LAMP1-positive organelles using annexin A11 as a tether.


Asunto(s)
Esclerosis Amiotrófica Lateral , Anexinas , Anexinas/metabolismo , Transporte Axonal , Humanos , Lisosomas/metabolismo , Orgánulos , ARN
10.
Acta Neuropathol ; 137(3): 487-500, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604225

RESUMEN

A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity.


Asunto(s)
Proteína C9orf72/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Dipéptidos/metabolismo , Drosophila , Demencia Frontotemporal/genética , Humanos
12.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29764981

RESUMEN

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Exones/genética , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Empalme del ARN/genética
13.
EMBO J ; 37(3): 321-336, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29311115

RESUMEN

In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double-knockout cells. In contrast, we show that TRAK2-mediated retrograde mitochondrial transport is Miro1-dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin-dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double-knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine-tune actin- and tubulin-dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.


Asunto(s)
Dineínas/metabolismo , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Miosinas/metabolismo , Proteínas de Unión al GTP rho/genética , Actinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Línea Celular Transformada , Proliferación Celular/genética , Desarrollo Embrionario/genética , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
14.
Neurochem Int ; 117: 55-64, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28711655

RESUMEN

The preservation of mitochondrial function is of particular importance in neurons given the high energy requirements of action potential propagation and synaptic transmission. Indeed, disruptions in mitochondrial dynamics and quality control are linked to cellular pathology in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Here, we will discuss the role of ubiquitination by the E3 ligases: Parkin, MARCH5 and Mul1, and how they regulate mitochondrial homeostasis. Furthermore, given the role of Parkin and Mul1 in the formation of mitochondria-derived vesicles we give an overview of this area of mitochondrial homeostasis. We highlight how through the activity of these enzymes and MDV formation, multiple facets of mitochondrial biology can be regulated, ensuring the functionality of the mitochondrial network thus preserving neuronal health.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Ubiquitinación/fisiología , Animales , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Biol Chem ; 291(2): 613-29, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26553875

RESUMEN

The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.


Asunto(s)
Dendritas/metabolismo , Dinámicas Mitocondriales , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Tejido Nervioso/química , Unión Proteica , ARN Largo no Codificante , Proteínas Recombinantes de Fusión/metabolismo , Esquizofrenia/metabolismo , Relación Estructura-Actividad
16.
Neurobiol Dis ; 90: 27-34, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26707701

RESUMEN

Neurons are highly polarised cells with an elaborate and diverse cytoarchitecture. But this complex architecture presents a major problem: how to appropriately distribute metabolic resources where they are most needed within the cell. The solution comes in the form of mitochondria: highly dynamic organelles subject to a repertoire of trafficking, fission/fusion and quality control systems which work in concert to orchestrate a precisely distributed and healthy mitochondrial network. Mitochondria are critical for maintaining local energy supply and buffering Ca(2+) flux within neurons, and are increasingly recognised as being essential for healthy neuronal function. Mitochondrial movements are facilitated by their coupling to microtubule-based transport via kinesin and dynein motors. Adaptor proteins are required for this coupling and the mitochondrial Rho GTPases Miro1 and Miro2 are core components of this machinery. Both Miros have Ca(2+)-sensing and GTPase domains, and are therefore ideally suited to coordinating mitochondrial dynamics with intracellular signalling pathways and local energy turnover. In this review, we focus on Miro's role in mediating mitochondrial transport in neurons, and the relevance of these mechanisms to neuronal health and disease.


Asunto(s)
Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos
17.
J Biol Chem ; 289(21): 14569-82, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24671417

RESUMEN

Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2-3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rho/metabolismo , Animales , Células COS , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Femenino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Microscopía Confocal , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Serina/genética , Serina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión al GTP rho/genética
18.
Biochem Soc Trans ; 41(6): 1525-31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256248

RESUMEN

Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration.


Asunto(s)
Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Humanos , Mitocondrias/metabolismo , Neuronas/enzimología
19.
J Neurochem ; 126(1): 102-12, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23600800

RESUMEN

ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of painful stimuli and are modulated by extracellular algogenic substances, via changes in the receptor phosphorylation state. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in interacting and controlling P2X3 receptor expression and function in mouse trigeminal ganglia. Most ganglion neurons in situ or in culture co-expressed P2X3 and CASK. CASK was immunoprecipitated with P2X3 receptors from trigeminal ganglia and from P2X3/CASK-cotransfected human embryonic kidney (HEK) cells. Recombinant P2X3/CASK expression in HEK cells increased serine phosphorylation of P2X3 receptors, typically associated with receptor upregulation. CASK deletion mutants also enhanced P2X3 subunit expression. After silencing CASK, cell surface P2X3 receptor expression was decreased, which is consistent with depressed P2X3 currents. The reduction in P2X3 expression levels was reversed by the proteasomal inhibitor MG-132. Moreover, neuronal CASK/P2X3 interaction was up-regulated by nerve growth factor (NGF) signaling and down-regulated by P2X3 agonist-induced desensitization. These data suggest a novel interaction between CASK and P2X3 receptors with positive outcome for receptor stability and function. As CASK-mediated control of P2X3 receptors was dependent on the receptor activation state, CASK represents an intracellular gateway to regulate purinergic nociceptive signaling.


Asunto(s)
Guanilato-Quinasas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Biotinilación , Inhibidores de Cisteína Proteinasa/farmacología , Técnica del Anticuerpo Fluorescente , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Silenciador del Gen , Guanilato-Quinasas/antagonistas & inhibidores , Guanilato-Quinasas/genética , Células HEK293 , Humanos , Inmunoprecipitación , Leupeptinas/farmacología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Receptores Purinérgicos P2X3/genética , Transfección , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo
20.
Mol Pain ; 6: 48, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20735819

RESUMEN

BACKGROUND: The R192Q mutation of the CACNA1A gene, encoding for the α1 subunit of voltage-gated P/Q Ca2+ channels (Ca(v)2.1), is associated with familial hemiplegic migraine-1. We investigated whether this gain-of-function mutation changed the structure and function of trigeminal neuron P2X3 receptors that are thought to be important contributors to migraine pain. RESULTS: Using in vitro trigeminal sensory neurons of a mouse genetic model knockin for the CACNA1A R192Q mutation, we performed patch clamp recording and intracellular Ca2+ imaging that showed how these knockin ganglion neurons generated P2X3 receptor-mediated responses significantly larger than wt neurons. These enhanced effects were reversed by the Ca(v)2.1 blocker ω-agatoxin. We, thus, explored intracellular signalling dependent on kinases and phosphatases to understand the molecular regulation of P2X3 receptors of knockin neurons. In such cells we observed strong activation of CaMKII reversed by ω-agatoxin treatment. The CaMKII inhibitor KN-93 blocked CaMKII phosphorylation and the hyperesponsive P2X3 phenotype. Although no significant difference in membrane expression of knockin receptors was found, serine phosphorylation of knockin P2X3 receptors was constitutively decreased and restored by KN-93. No change in threonine or tyrosine phosphorylation was detected. Finally, pharmacological inhibitors of the phosphatase calcineurin normalized the enhanced P2X3 receptor responses of knockin neurons and increased their serine phosphorylation. CONCLUSIONS: The present results suggest that the CACNA1A mutation conferred a novel molecular phenotype to P2X3 receptors of trigeminal ganglion neurons via CaMKII-dependent activation of calcineurin that selectively impaired the serine phosphorylation state of such receptors, thus potentiating their effects in transducing trigeminal nociception.


Asunto(s)
Canales de Calcio Tipo P/genética , Canales de Calcio Tipo Q/genética , Ganglios Sensoriales/metabolismo , Activación del Canal Iónico/fisiología , Migraña con Aura/genética , Mutación/genética , Dolor/fisiopatología , Receptores Purinérgicos P2X3/metabolismo , Adenosina Trifosfato/metabolismo , Agatoxinas , Sustitución de Aminoácidos/genética , Animales , Calcineurina/metabolismo , Canales de Calcio Tipo N , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Activación Enzimática/efectos de los fármacos , Ganglios Sensoriales/efectos de los fármacos , Técnicas de Sustitución del Gen , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Migraña con Aura/complicaciones , Migraña con Aura/fisiopatología , Proteínas Mutantes/metabolismo , Dolor/complicaciones , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Potasio/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Venenos de Araña/farmacología , Nervio Trigémino/efectos de los fármacos , Nervio Trigémino/enzimología , Nervio Trigémino/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...