Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 652: 1168-1186, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30586804

RESUMEN

In mountainous-forested landscape, quantifying the materials produced at hillslope scale that effectively reach the channel network with a given probability is currently challenging, due to the uncertainties in modelling the frequency-magnitude distribution of failures and in determining the sediment connectivity between unstable areas and channel network. The purpose of this study is to develop a modular approach to assess the sediment source areas and the probability of mobilization from hillslope, and to estimate the probability of sediment input to the streams proposing a new connectivity index. The first goal was faced adopting a 3D probabilistic slope stability method that includes the spatially distributed characteristics of forest coverage. The second aim was tackled by comparing sediment travel distance and the minimum-topographic distance to reach the nearest stream. A simple deposition model was applied to estimate the percentage of the sediment entering into the stream network. The methodology was tested on three headwater catchments in northern Italian Alps. The outputs were landslide susceptibility maps, which showed robust performances when compared to the available landslide inventories (AUC > 0.726), and maps of the probability that sediment reaches the channel network. In this way, it was possible to identify which areas are the most susceptible to landsliding, how many sediment materials can be mobilised with a given probability, and which is the degree of sediment connectivity with the channel system. Results obtained for the tested catchments, compared with data available from the literature, showed that the proposed methodology is of general validity, especially for those territories characterized by rainfall-triggered landslides and forest coverage. This study, then, provides a robust framework to improve debris-flow risk management and to implement watershed management strategies, such as planning forestry operations or positioning retention structures addressed to increase slope stability and to reduce sediment delivery.

2.
Environ Monit Assess ; 187(9): 586, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26307688

RESUMEN

The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.


Asunto(s)
Agricultura/métodos , Oryza , Agua , Inundaciones , Agua Subterránea , Italia , Programas Informáticos , Suelo/química , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...