Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(5): 1298-1310, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38459694

RESUMEN

Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.


Asunto(s)
Sistemas CRISPR-Cas , Desoxirribonucleasa I , Edición Génica , Queratinocitos , Humanos , Edición Génica/métodos , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/genética , Queratinocitos/metabolismo , Roturas del ADN de Doble Cadena , Aberraciones Cromosómicas , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396920

RESUMEN

The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.


Asunto(s)
Epidermólisis Ampollosa , Humanos , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/terapia , Epidermólisis Ampollosa/patología , Piel/metabolismo , Epidermis/metabolismo , Vesícula , Mutación
3.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255836

RESUMEN

Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).


Asunto(s)
Epidermólisis Ampollosa Distrófica , Humanos , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Empalme del ARN , Piel , Intrones , Precursores del ARN , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Colágeno Tipo VII/genética
4.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37681509

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Asunto(s)
Carcinoma de Células Escamosas , Epidermólisis Ampollosa Distrófica , Transición Epitelial-Mesenquimal , MicroARNs , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/etiología , Células Endoteliales/patología , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/complicaciones , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Neoplasias Cutáneas/patología
6.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982270

RESUMEN

Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of Streptococcus pyogenes we fused the coding sequence of GFP to COL17A1 leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes. We confirmed the accurate full-length expression and localization of GFP-C17 to the plasma membrane via fluorescence microscopy and Western blot analysis. As expected, the expression of GFP-C17mut fusion proteins in JEB keratinocytes generated no specific GFP signal. However, the CRISPR/Cas9-mediated repair of a JEB-associated frameshift mutation in GFP-COL17A1mut-expressing JEB cells led to the restoration of GFP-C17, apparent in the full-length expression of the fusion protein, its accurate localization within the plasma membrane of keratinocyte monolayers as well as within the basement membrane zone of 3D-skin equivalents. Thus, this fluorescence-based JEB cell line provides the potential to serve as a platform to screen for personalized gene editing molecules and applications in vitro and in appropriate animal models in vivo.


Asunto(s)
Epidermólisis Ampollosa de la Unión , Epidermólisis Ampollosa , Animales , Humanos , Epidermólisis Ampollosa de la Unión/genética , Edición Génica , Piel , Mutación , Queratinocitos , Epidermólisis Ampollosa/genética
7.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900361

RESUMEN

Biliary tract cancer (BTC) is a gastrointestinal malignancy associated with a poor survival rate. Current therapies encompass palliative and chemotherapeutic treatment as well as radiation therapy, which results in a median survival of only one year due to standard therapeutic ineffectiveness or resistance. Tazemetostat is an FDA-approved inhibitor of enhancer of Zeste homolog 2 (EZH2), a methyltransferase involved in BTC tumorigenesis via trimethylation of histone 3 at lysine 27 (H3K27me3), an epigenetic mark associated with silencing of tumor suppressor genes. Up to now, there are no data available regarding tazemetostat as a possible treatment option against BTC. Therefore, the aim of our study is a first-time investigation of tazemetostat as a potential anti-BTC substance in vitro. In this study, we demonstrate that tazemetostat affects cell viability and the clonogenic growth of BTC cells in a cell line-dependent manner. Furthermore, we found a strong epigenetic effect at low concentrations of tazemetostat, which was independent of the cytotoxic effect. We also observed in one BTC cell line that tazemetostat increases the mRNA levels and protein expression of the tumor suppressor gene Fructose-1,6-bisphosphatase 1 (FBP1). Interestingly, the observed cytotoxic and epigenetic effects were independent of the mutation status of EZH2. To conclude, our study shows that tazemetostat is a potential anti-tumorigenic substance in BTC with a strong epigenetic effect.

8.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901775

RESUMEN

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa , Humanos , Trans-Empalme , Piel/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa/genética , Queratinocitos/metabolismo , Colágeno Tipo VII/genética , Mutación
9.
Front Med (Lausanne) ; 9: 976604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091706

RESUMEN

Background: Epidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB). Methods: In this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene. Results: As analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents. Conclusion: Here we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.

10.
Mol Ther ; 30(8): 2680-2692, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35490295

RESUMEN

Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6ß4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.


Asunto(s)
Autoantígenos , Epidermólisis Ampollosa de la Unión , Epidermólisis Ampollosa , Colágenos no Fibrilares , Autoantígenos/genética , Desoxirribonucleasa I/genética , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/terapia , Homocigoto , Humanos , Laminina/genética , Mutación , Colágenos no Fibrilares/genética , Eliminación de Secuencia , Colágeno Tipo XVII
11.
Expert Opin Biol Ther ; 22(9): 1137-1150, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35235467

RESUMEN

INTRODUCTION: The genodermatosis epidermolysis bullosa (EB) is a monogenetic disease, characterized by severe blister formation on the skin and mucous membranes upon minimal mechanical trauma. Causes for the disease are mutations in genes encoding proteins that are essential for skin integrity. In EB, one of these proteins is either functionally impaired or completely absent. Therefore, the development and improvement of DNA and RNA-based therapeutic approaches for this severe blistering skin disease is mandatory to achieve a treatment option for the patients. AREAS COVERED: Currently, there are several forms of DNA/RNA therapies potentially feasible for EB. Whereas some of them are still at the preclinical stage, others are clinically advanced and have already been applied to patients. In particular, this is the case for a cDNA replacement approach successfully applied for a small number of patients with junctional EB. EXPERT OPINION: The heterogeneity of EB justifies the development of therapeutic options with distinct modes of action at a DNA or RNA level. In addition, splicing-modulating therapies, based on RNA trans-splicing or short antisense oligonucleotides, especially designer nucleases, have steadily improved in efficiency and safety and thus likely represent the most promising gene therapy tool in the near future.


Asunto(s)
Epidermólisis Ampollosa , ADN Complementario , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/terapia , Terapia Genética , Humanos , Oligonucleótidos Antisentido , ARN
12.
Mol Ther Nucleic Acids ; 25: 237-250, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34458008

RESUMEN

Gene editing via homology-directed repair (HDR) currently comprises the best strategy to obtain perfect corrections for pathogenic mutations of monogenic diseases, such as the severe recessive dystrophic form of the blistering skin disease epidermolysis bullosa (RDEB). Limitations of this strategy, in particular low efficiencies and off-target effects, hinder progress toward clinical applications. However, the severity of RDEB necessitates the development of efficient and safe gene-editing therapies based on perfect repair. To this end, we sought to assess the corrective efficiencies following optimal Cas9 nuclease and nickase-based COL7A1-targeting strategies in combination with single- or double-stranded donor templates for HDR at the COL7A1 mutation site. We achieved HDR-mediated correction efficiencies of up to 21% and 10% in primary RDEB keratinocytes and fibroblasts, respectively, as analyzed by next-generation sequencing, leading to full-length type VII collagen restoration and accurate deposition within engineered three-dimensional (3D) skin equivalents (SEs). Extensive on- and off-target analyses confirmed that the combined treatment of paired nicking and single-stranded oligonucleotides constituted a highly efficient COL7A1-editing strategy, associated with a significantly improved safety profile. Our findings, therefore, represent a further advancement in the field of traceless genome editing for genodermatoses.

13.
Aging (Albany NY) ; 13(15): 19127-19144, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34339392

RESUMEN

The turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness. The rise of calcium in the stratum basale reduces cell proliferation, whereas the drop of calcium in the stratum granulosum leads to a changed composition of the cornified envelope. We showed that keratinocytes respond to the calcium induced block of cell division by a large increase of the expression of several miRNAs (hsa-mir542-5p, hsa-mir125a, hsa-mir135a-5p, hsa-mir196a-5p, hsa-mir491-5p and hsa-mir552-5p). The pitfall of this rescue mechanism is a dramatic change in gene expression which causes a further impairment of the epidermal barrier. This effect is attenuated by a pseudogene (SPRR2C) that gives rise to a lncRNA. SPRR2C specifically resides in the stratum granulosum/corneum thus acting as a sponge for miRNAs.


Asunto(s)
Calcio/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Envejecimiento de la Piel/genética , Diferenciación Celular/fisiología , Proliferación Celular , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Células Epidérmicas/metabolismo , Expresión Génica , Humanos , Queratinocitos/citología , MicroARNs/metabolismo
14.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946877

RESUMEN

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleótidos Antisentido/administración & dosificación , Cicatrización de Heridas/genética , Animales , Biopsia , Línea Celular , Modelos Animales de Enfermedad , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Exones/genética , Fibroblastos , Fibrosis , Humanos , Queratinocitos , Ratones , Ratones Transgénicos , Mutación , Oligonucleótidos Antisentido/genética , Cultivo Primario de Células , Piel/efectos de los fármacos
15.
J Invest Dermatol ; 140(10): 1985-1993.e5, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32142798

RESUMEN

End-joining‒based gene editing is frequently used for efficient reframing and knockout of target genes. However, the associated random, unpredictable, and often heterogeneous repair outcomes limit its applicability for therapeutic approaches. This study revealed more precise and predictable outcomes simply on the basis of the sequence context at the CRISPR/Cas9 target site. The severe dystrophic form of the blistering skin disease epidermolysis bullosa (DEB) represents a suitable model platform to test these recent developments for the disruption and reframing of dominant and recessive alleles, respectively, both frequently seen in DEB. We delivered a CRISPR/Cas9 nuclease as ribonucleoprotein into primary wild-type and recessive DEB keratinocytes to introduce a precise predictable single adenine sense-strand insertion at the target site. We achieved type VII collagen knockout in more than 40% of ribonucleoprotein-treated primary wild-type keratinocytes and type VII collagen restoration in more than 70% of ribonucleoprotein-treated recessive DEB keratinocytes. Next-generation sequencing of the on-target site revealed the presence of the precise adenine insertion upstream of the pathogenic mutation in at least 17% of all analyzed COL7A1 alleles. This demonstrates that COL7A1 editing based on precise end-joining‒mediated DNA repair is an efficient strategy to revert the disease-associated nature of DEB regardless of the mutational inheritance.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Edición Génica , Células Cultivadas , Reparación del ADN por Unión de Extremidades , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Queratinocitos/metabolismo , Mutación , Ribonucleoproteínas/farmacología
16.
Geroscience ; 42(1): 19-38, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31676965

RESUMEN

Originally Lipid droplets (LDs) were considered as being droplets for lipid storage only. Increasing evidence, however, demonstrates that LDs fulfill a pleiotropy of additional functions. Among them is the modulation of protein as well as lipid homeostasis. Under unfavorable pro-oxidative conditions, proteins can form aggregates which may exceed the overall proteolytic capacity of the proteasome. After stress termination LDs can adjust and support the removal of these aggregates. Additionally, LDs interact with mitochondria, specifically take over certain proteins and thus prevent apoptosis. LDs, which are loaded with these harmful proteins, are subsequently eliminated via lipophagy. Recently it was demonstrated that this autophagic process is a modulator of longevity. LDs do not only eliminate potentially dangerous proteins, but they are also able to prevent lipotoxicity by storing specific lipids. In the present study we used the model organism Saccharomyces cerevisiae to compare the proteome as well as lipidome of mitochondria and LDs under different conditions: replicative aging, stress and apoptosis. In this context we found an accumulation of proteins at LDs, supporting the role of LDs in proteostasis. Additionally, the composition of main lipid classes such as phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, triacylglycerols, ceramides, phosphatidic acids and ergosterol of LDs and mitochondria changed during stress conditions and aging.


Asunto(s)
Gotas Lipídicas , Saccharomyces cerevisiae , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lípidos , Mitocondrias/metabolismo , Proteostasis
17.
Cell Rep ; 27(3): 955-970.e7, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995488

RESUMEN

Combinatorial interactions among transcription factors (TFs) play essential roles in generating gene expression specificity and diversity in metazoans. Using yeast 2-hybrid (Y2H) assays on nearly all sequence-specific Drosophila TFs, we identified 1,983 protein-protein interactions (PPIs), more than doubling the number of currently known PPIs among Drosophila TFs. For quality assessment, we validated a subset of our interactions using MITOMI and bimolecular fluorescence complementation assays. We combined our interactome with prior PPI data to generate an integrated Drosophila TF-TF binary interaction network. Our analysis of ChIP-seq data, integrating PPI and gene expression information, uncovered different modes by which interacting TFs are recruited to DNA. We further demonstrate the utility of our Drosophila interactome in shedding light on human TF-TF interactions. This study reveals how TFs interact to bind regulatory elements in vivo and serves as a resource of Drosophila TF-TF binary PPIs for understanding tissue-specific gene regulation.


Asunto(s)
Drosophila melanogaster/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Microscopía Fluorescente , Mapas de Interacción de Proteínas/genética , Elementos Reguladores de la Transcripción , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
18.
Elife ; 72018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30247122

RESUMEN

Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods.We present a set of fly lines, called 'multicolor BiFC library', which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Biblioteca de Genes , Mapeo de Interacción de Proteínas/métodos , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Color , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Unión Proteica , Factores de Transcripción/metabolismo
19.
Yeast ; 35(2): 237-249, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29044689

RESUMEN

In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae. In this study we describe the establishment of an aging reporter that allows a reliable and relative quick screening of substances and genes that have an impact on the replicative lifespan. A cDNA library of the flatworm Dugesia tigrina that can be immortalized by beheading was screened using this aging reporter. Of all the flatworm genes, only one could be identified that significantly increased the replicative lifespan of S.cerevisiae. This gene is the cysteine protease cathepsin L that was sequenced for the first time in this study. We were able to show that this protease has the capability to degrade such proteins as the yeast Sup35 protein or the human α-synuclein protein in yeast cells that are both capable of forming cytosolic toxic aggregates. The degradation of these proteins by cathepsin L prevents the formation of these unfolded protein aggregates and this seems to be responsible for the increase in replicative lifespan.


Asunto(s)
Catepsina L/metabolismo , Planarias/microbiología , Saccharomyces cerevisiae/genética , Animales , Catepsina L/genética , ADN Complementario , ADN de Hongos , Regulación Fúngica de la Expresión Génica , Hydra , Longevidad , Saccharomyces cerevisiae/metabolismo
20.
Development ; 144(24): 4573-4587, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084803

RESUMEN

Cells in ectotherms function normally within an often wide temperature range. As temperature dependence is not uniform across all the distinct biological processes, acclimation presumably requires complex regulation. The molecular mechanisms that cope with the disruptive effects of temperature variation are still poorly understood. Interestingly, one of five different ß-tubulin paralogs, ßTub97EF, was among the genes upregulated at low temperature in cultured Drosophila cells. As microtubules are known to be cold sensitive, we analyzed whether ßTub97EF protects microtubules at low temperatures. During development at the optimal temperature (25°C), ßTub97EF was expressed in a tissue-specific pattern primarily in the gut. There, as well as in hemocytes, expression was increased at low temperature (14°C). Although ßTub97EF mutants were viable and fertile at 25°C, their sensitivity within the well-tolerated range was slightly enhanced during embryogenesis specifically at low temperatures. Changing ß-tubulin isoform ratios in hemocytes demonstrated that ß-Tubulin 97EF has a pronounced microtubule stabilizing effect. Moreover, ßTub97EF is required for normal microtubule stability in the gut. These results suggest that ßTub97EF upregulation at low temperature contributes to acclimation by stabilizing microtubules.


Asunto(s)
Frío , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/biosíntesis , Aclimatación , Animales , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Tracto Gastrointestinal/metabolismo , Dominios Proteicos/fisiología , Isoformas de Proteínas/metabolismo , Activación Transcripcional/genética , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...