Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 17(6): 1033-40, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20022548

RESUMEN

The industrial treatment of spent nuclear fuel is based upon a hydrometallurgical process in nitric acid medium. In order to minimize the volume of radioactive waste it seems interesting to generate the reactive species in situ in such solutions using ultrasonic irradiation without addition of salt-forming reagents. This review summarizes for the first time the versatile sonochemical processes with uranium, neptunium and plutonium in homogeneous nitric acid solutions and heterogeneous systems. The dissolution of refractory solids, ultrasonically driven liquid-liquid extraction and the sonochemical degradation of the volatile products of organic solvent radiolysis issued from PUREX process are considered. Also the guidelines for required further work to ensure successful application of the studied processes at industrial scale are discussed.


Asunto(s)
Energía Nuclear , Ultrasonido , Elementos de Series Actinoides/química , Ácido Nítrico/química , Oxidación-Reducción
2.
Dalton Trans ; (21): 2526-34, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16718336

RESUMEN

Stability of neat hydrophobic Room-Temperature Ionic Liquids (RTIL) [BuMeIm]X, where [BuMeIm]+ is 1-butyl-3-methylimidazolium and X- is PF6-, and (CF3SO2)2N-, was studied under gamma radiolysis (137Cs) in an argon atmosphere and in air. It was found that the density, surface tension, and refraction index of RTILs are unchanged even by an absorbed dose of approximately 600 kGy. Studied RTILs exhibit considerable darkening when subjected to gamma irradiation. The light absorbance of ionic liquids increases linearly with the irradiation dose. Water has no influence on radiolytic darkening. A comparative study of [BuMeIm]X and [Bu4N][Tf2N] leads to the conclusion that the formation of colored products is related to gamma radiolysis of the [BuMeIm]+ cation. The radiolytic darkening kinetics of RTILs is influenced by the anions as follows: Cl- < (CF3SO2)2N- < PF6-. Electrospray ionization mass spectrometry and NMR analysis reveal the presence of nonvolatile radiolysis products at concentrations below 1 mol% for an absorbed dose exceeding 1200 kGy. Initial step of BuMeIm+ cation radiolysis is the loss of the Bu* group, the H* atom from the 2 position on the imidazolium ring, and the H* atom from the butyl chain. Radiolysis of ionic liquid anions yields F* and CF3* from PF6- and [Tf2N]-, respectively. Recombinations of these primary products of radiolysis lead to various polymeric and acidic species.

3.
J Chromatogr A ; 1015(1-2): 219-31, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-14570333

RESUMEN

The potential of capillary zone electrophoresis (CZE) for the determination of dibutyl phosphate (DBP) and monobutyl phosphate (MBP), two degradation products of the tributyl phosphate extractant used in the nuclear fuel reprocessing industry, was evaluated. Analysis conditions were optimised, taking particularly into account that many determinations had to be performed in concentrated aqueous nitrate or nitric acid solutions. Separations were therefore carried out using the counter-electroosmotic mode with cathodic detection in a pH 8.3 electrolyte containing a suitably selected chromophore, salicylate, to ensure the indirect UV detection of the analytes. Various aspects of the method, including its sensitivity, working range, repeatability, and rapidity, were examined. Quantification of both phosphate esters was achieved in less than 3 min at concentrations ranging from 2 x 10(-6) to 10(-3) mol l(-1) in samples containing no macro-component. The lower end of this range increased to 5 x 10(-6) mol l(-1) for MBP and 1.5 x 10(-5) mol l(-1) for DBP in samples containing 5 x 10(-2) mol l(-1) of sodium nitrate, thus enabling their determination in solutions containing nitrate or nitric acid at concentrations up to, respectively, 10,000 and 3000 times higher than the target analyte concentration. This simple, fast and reliable method is routinely applicable to aqueous samples with no other preliminary treatment than a proper dilution; analysis was also performed in organic matrices after a prior extraction. The method was validated by an excellent correlation with the standard DBP analysis technique, gas chromatography (GC). In order to develop appropriate chemical treatments to destroy these compounds, the method was applied to the monitoring of DBP and MBP degradation by hydrogen peroxide in 1 mol l(-1) nitric acid solutions.


Asunto(s)
Electroforesis Capilar/métodos , Ésteres/análisis , Nitratos/metabolismo , Fosfatos/análisis , Sensibilidad y Especificidad
4.
Ultrason Sonochem ; 8(3): 175-81, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11441595

RESUMEN

The effect of ultrasound (20 kHz, 3 W cm-2) on the kinetics of HNO2 and H2O2 formation was investigated in a 1 M HNO3 medium for NO2-Ar and NO-Ar gas mixtures in various volume fractions (f(NO2) < 1.7 vol% and f(NO) < 1.1 vol%, respectively). The H2O2 formation rate measured in 1 M HNO3 in the presence of N2H5NO3 was observed to be much lower than that of HNO2 without N2H5NO3, and was relatively independent of the NO2 or NO gas volume fractions in the argon atmosphere. The HNO2 formation rate increased under ultrasound, and was higher with NO than with NO2. The induction period observed without ultrasound disappeared when ultrasound was applied. The first step in the sonochemical mechanism of HNO2 formation in the presence of NO2 involves thermal decomposition of NO2 into NO within the cavitation bubble. In the second step of HNO2 formation, NO reacts either with HNO3 in the cavitation bubble, or with NO2 in the cavitation bubble or at the bubble/solution interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA