RESUMEN
It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP)1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
Asunto(s)
Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Enfermedad Pulmonar Obstructiva Crónica , Mecánica Respiratoria/fisiología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Antioxidantes/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Enfisema/etiología , Enfisema/fisiopatología , Enfisema/prevención & control , Interleucina-10/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismoRESUMEN
Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-β1 (TGF-β1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-β1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-β1.
Asunto(s)
Animales , Femenino , Ratones , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Mucosa Respiratoria/fisiopatología , Contaminación por Humo de Tabaco/efectos adversos , Arteriolas/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Músculo Liso Vascular/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-ß1 (TGF-ß1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-ß1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-ß1.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Mucosa Respiratoria/fisiopatología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Arteriolas/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Paracoccidioidomycosis (PCM) has two main clinical presentations, a chronic form (CF) and an acute, more severe form (AF). The AF is associated with a more marked dysfunction of the patient's immune response, and a distinct anti-Paracoccidioides brasiliensis immunoglobulin (Ig)A and IgG antibody subclass expression, compared with that seen in the CF. In this study we investigated the presence of IgE antibodies against the main P. brasiliensis antigen (a 43-kDa molecule) in the serum of PCM patients using an enzyme-linked immunosorbent assay. We found that 100% of the AF patients (n = 16) produced IgE antibodies, mostly at high levels, whereas only 9 (27%) out of 33 CF patients produced this isotype. Interestingly, these nine patients presented higher serological titers on the counter-immunoelectrophoresis assay than did those who did not produce IgE; a finding that suggests that they had a relatively more severe disease. As IgE is a characteristic feature of the AF patients, and switching to a positive IgE response is dependent on interleukin-4, our results support the notion that the relatively more severe impairment of cellular immunity in the AF is probably related to a Th-2 pattern of immune response.
Asunto(s)
Anticuerpos Antifúngicos/sangre , Antígenos Fúngicos/inmunología , Proteínas Fúngicas , Glicoproteínas/inmunología , Inmunoglobulina E/sangre , Oligosacáridos/inmunología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Humanos , Inmunoglobulina G/clasificaciónRESUMEN
We investigated the relationship between antibody response to the major Paracoccidioides brasiliensis antigen, a 43-kDa glycoprotein, and the two paracoccidioidomycosis (PCM) clinical presentations, the juvenile and the adult forms. Total immunoglobulin G (IgG), IgG isotypes, and IgA anti-gp43 antibodies were determined by enzyme-linked immunosorbent assay in patients'sera. Juvenile PCM patients had higher (P =.003) IgG anti-gp43 levels than adult form patients. IgG1 subclass levels, however, were comparable between the two clinical forms. Patients with the juvenile form had higher (P <. 001) IgG4, but lower (P =.03) IgG2 levels than patients with the adult form. The IgG4 isotype, regulated by interleukin 4, was found in all juvenile form patients but in only 12% of the adult form patients. In contrast, high levels of the IgG2 isotype, regulated by interferon-gamma, were found in 41% of the adult PCM patients, mainly those with a more benign disease, but in only 12% of the juvenile patients. IgG3 was either absent or detected at low levels. These results demonstrate, for the first time, specific IgG4 antibodies in the humoral immune response of patients with an endemic deep mycosis and suggest that the switch to the IgG subclasses in PCM is regulated by the patients' T-helper subset (Th-1 or Th-2) dominant cytokine profile. A possible role for IgG4 in the immunopathogenesis of the juvenile, more severe form of the disease is discussed. Finally, IgA was found mainly in adult form patients, probably as a result of the chronic mucosal antigenic stimulation characteristic of this form.
Asunto(s)
Anticuerpos Antifúngicos/sangre , Antígenos Fúngicos , Proteínas Fúngicas , Glicoproteínas/inmunología , Isotipos de Inmunoglobulinas/sangre , Oligosacáridos/inmunología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Adolescente , Adulto , Anticuerpos Antifúngicos/inmunología , Niño , Contrainmunoelectroforesis , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Isotipos de Inmunoglobulinas/inmunología , Células TH1/inmunología , Células Th2/inmunologíaRESUMEN
Wild-type and chimeric constructs comprising rabbit sarcoplasmic reticulum (SR) Ca(2+)-ATPase and the N-terminal cytoplasmic portion of yeast plasma membrane H(+)-ATPase were expressed in yeast under control of a heat-shock regulated promoter. The wild-type ATPase was found predominantly in endoplasmic reticulum (ER) membranes. Addition of the first 88 residues of H(+)-ATPase to the Ca(2+)-ATPase N-terminal end promoted a marked shift in the localization of chimeric H(+)/Ca(2+)-ATPase which accumulated in a light membrane fraction associated with yeast smooth ER. Furthermore, there was a three-fold increase in the overall level of expression of chimeric H(+)/Ca(2+)-ATPase. Similar results were obtained for a chimeric Ca(2+)-ATPase containing a hexahistidine sequence added to its N-terminal end. Both H(+)/Ca(2+)-ATPase and 6xHis-Ca(2+)-ATPase were functional as demonstrated by their ability to form a phosphorylated intermediate and undergo fast turnover. Conversely, a replacement chimera in which the N-terminal end of SR Ca(2+)-ATPase was replaced by the corresponding segment of H(+)-ATPase was not stably expressed in yeast membranes. These results indicate that the N-terminal segment of Ca(2+)-ATPase plays an important role in enzyme assembly and contains structural determinants necessary for ER retention of the ATPase.