Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 5(1): e2145669, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35089353

RESUMEN

Importance: A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants. Objective: To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents. Design, Setting, and Participants: This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021. Exposures: Testing for SARS-CoV-2 and influenza A and B viruses. Main Outcomes and Measures: SARS-CoV-2 and influenza infection status and quantitative viral load were determined. Results: Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone). Conclusions and Relevance: In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.


Asunto(s)
COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Orthomyxoviridae/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Teléfono Inteligente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos , Adulto Joven
2.
Phys Rev Lett ; 124(14): 143601, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338976

RESUMEN

Frequency encoding of quantum information together with fiber and integrated photonic technologies can significantly reduce the complexity and resource requirements for realizing all-photonic quantum networks. The key challenge for such frequency domain processing of single photons is to realize coherent and selective interactions between quantum optical fields of different frequencies over a range of bandwidths. Here, we report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator. We use four-wave mixing to implement an active "frequency beam splitter" and achieve interference visibilities of 0.95±0.02. Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain which, combined with integrated single-photon sources, provides a building block for frequency-multiplexed photonic quantum networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA