Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645032

RESUMEN

The conserved Rad2/XPG family 5'-3' exonuclease, Exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double strand breaks (DSBs) via homologous recombination. Prior studies provided evidence that the end-resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here we provide evidence that the master meiotic kinase Mek1, a paralogue of Rad53, limits 5'-3' single strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53. Article Summary: Meiotic recombination involves formation of programmed DNA double strand breaks followed by 5' to 3' single strand specific resection by nucleases including Exo1. We find that the activity of budding yeast Exo1 is downregulated during meiotic recombination by the master meiotic kinase Mek1. The mechanism of downregulation of Exo1 by Mek1 in meiosis does not depend on the same phospho-sites as those used by the mitotic kinase Rad53, a relative of Mek1 that downregulates Exo1 in mitosis.

2.
Curr Opin Genet Dev ; 71: 120-128, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34343922

RESUMEN

Members of the RecA family of strand exchange proteins carry out the central reaction in homologous recombination. These proteins are DNA-dependent ATPases, although their ATPase activity is not required for the key functions of homology search and strand exchange. We review the literature on the role of the intrinsic ATPase activity of strand exchange proteins. We also discuss the role of ATP-hydrolysis-dependent motor proteins that serve as strand exchange accessory factors, with an emphasis on the eukaryotic Rad54 family of double strand DNA-specific translocases. The energy from ATP allows recombination events to progress from the strand exchange stage to subsequent stages. ATP hydrolysis also functions to corrects DNA binding errors, including particularly detrimental binding to double strand DNA.


Asunto(s)
Adenosina Trifosfato , Rec A Recombinasas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , ADN/genética , Hidrólisis , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
4.
PLoS Genet ; 15(12): e1008217, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31790385

RESUMEN

During meiosis, homologous recombination repairs programmed DNA double-stranded breaks. Meiotic recombination physically links the homologous chromosomes ("homologs"), creating the tension between them that is required for their segregation. The central recombinase in this process is Dmc1. Dmc1's activity is regulated by its accessory factors including the heterodimeric protein Mei5-Sae3 and Rad51. We use a gain-of-function dmc1 mutant, dmc1-E157D, that bypasses Mei5-Sae3 to gain insight into the role of this accessory factor and its relationship to mitotic recombinase Rad51, which also functions as a Dmc1 accessory protein during meiosis. We find that Mei5-Sae3 has a role in filament formation and stability, but not in the bias of recombination partner choice that favors homolog over sister chromatids. Analysis of meiotic recombination intermediates suggests that Mei5-Sae3 and Rad51 function independently in promoting filament stability. In spite of its ability to load onto single-stranded DNA and carry out recombination in the absence of Mei5-Sae3, recombination promoted by the Dmc1 mutant is abnormal in that it forms foci in the absence of DNA breaks, displays unusually high levels of multi-chromatid and intersister joint molecule intermediates, as well as high levels of ectopic recombination products. We use super-resolution microscopy to show that the mutant protein forms longer foci than those formed by wild-type Dmc1. Our data support a model in which longer filaments are more prone to engage in aberrant recombination events, suggesting that filament lengths are normally limited by a regulatory mechanism that functions to prevent recombination-mediated genome rearrangements.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/química , Intercambio Genético , Roturas del ADN de Doble Cadena , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Mutación con Ganancia de Función , Recombinación Homóloga , Meiosis , Modelos Biológicos , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Genetics ; 213(4): 1255-1269, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597673

RESUMEN

The number and distribution of meiotic crossovers (COs) are highly regulated, reflecting the requirement for COs during the first round of meiotic chromosome segregation. CO control includes CO assurance and CO interference, which promote at least one CO per chromosome bivalent and evenly-spaced COs, respectively. Previous studies revealed a role for the DNA damage response (DDR) clamp and the clamp loader in CO formation by promoting interfering COs and interhomolog recombination, and also by suppressing ectopic recombination. In this study, we use classical tetrad analysis of Saccharomyces cerevisiae to show that a mutant defective in RAD24, which encodes the DDR clamp loader (RAD17 in other organisms), displayed reduced CO frequencies on two shorter chromosomes (III and V), but not on a long chromosome (chromosome VII). The residual COs in the rad24 mutant do not show interference. In contrast to rad24, mutants defective in the ATR kinase homolog Mec1, including a mec1 null and a mec1 kinase-dead mutant, show slight or few defects in CO frequency. On the other hand, mec1 COs show defects in interference, similar to the rad24 mutant. Our results support a model in which the DDR clamp and clamp-loader proteins promote interfering COs by recruiting pro-CO Zip, Mer, and Msh proteins to recombination sites, while the Mec1 kinase regulates CO distribution by a distinct mechanism. Moreover, CO formation and its control are implemented in a chromosome-specific manner, which may reflect a role for chromosome size in regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Segregación Cromosómica/genética , Cromosomas Fúngicos/genética , Mutación/genética , Recombinación Genética/genética
6.
Nat Commun ; 10(1): 4410, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562309

RESUMEN

The central recombination enzyme RAD51 has been implicated in replication fork processing and restart in response to replication stress. Here, we use a separation-of-function allele of RAD51 that retains DNA binding, but not D-loop activity, to reveal mechanistic aspects of RAD51's roles in the response to replication stress. Here, we find that cells lacking RAD51's enzymatic activity protect replication forks from MRE11-dependent degradation, as expected from previous studies. Unexpectedly, we find that RAD51's strand exchange activity is not required to convert stalled forks to a form that can be degraded by DNA2. Such conversion was shown previously to require replication fork regression, supporting a model in which fork regression depends on a non-enzymatic function of RAD51. We also show RAD51 promotes replication restart by both strand exchange-dependent and strand exchange-independent mechanisms.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/química , Recombinasa Rad51/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Modelos Genéticos , Mutación , Conformación de Ácido Nucleico , Recombinasa Rad51/genética
7.
Nucleic Acids Res ; 47(2): 747-761, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30462332

RESUMEN

Dmc1 catalyzes homology search and strand exchange during meiotic recombination in budding yeast and many other organisms including humans. Here we reconstitute Dmc1 recombination in vitro using six purified proteins from budding yeast including Dmc1 and its accessory proteins RPA, Rad51, Rdh54/Tid1, Mei5-Sae3 and Hop2-Mnd1 to promote D-loop formation between ssDNA and dsDNA substrates. Each accessory protein contributed to Dmc1's activity, with the combination of all six proteins yielding optimal activity. The ssDNA binding protein RPA plays multiple roles in stimulating Dmc1's activity including by overcoming inhibitory effects of ssDNA secondary structure on D-loop reactions, and by elongating D-loops. In addition, we demonstrate that RPA limits inhibitory interactions of Hop2-Mnd1 and Rdh54/Tid1 that otherwise occur during assembly of Dmc1-ssDNA nucleoprotein filaments. Finally, we report interactions between the proteins employed in the biochemical reconstitution including a direct interaction between Rad51 and Dmc1 that is enhanced by Mei5-Sae3.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Recombinación Genética , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Conformación de Ácido Nucleico , Recombinasa Rad51/metabolismo
8.
Nucleic Acids Res ; 46(18): 9510-9523, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30137528

RESUMEN

The Escherichia coli RecA protein catalyzes the central step of homologous recombination using its homology search and strand exchange activity. RecA is a DNA-dependent ATPase, but its homology search and strand exchange activities are largely independent of its ATPase activity. ATP hydrolysis converts a high affinity DNA binding form, RecA-ATP, to a low affinity form RecA-ADP, thereby supporting an ATP hydrolysis-dependent dynamic cycle of DNA binding and dissociation. We provide evidence for a novel function of RecA's dynamic behavior; RecA's ATPase activity prevents accumulation of toxic complexes caused by direct binding of RecA to undamaged regions of dsDNA. We show that a mutant form of RecA, RecA-K250N, previously shown to be toxic to E. coli, is a loss-of-function ATPase-defective mutant. We use a new method for detecting RecA complexes involving nucleoid surface spreading and immunostaining. The method allows detection of damage-induced RecA foci; STED microscopy revealed these to typically be between 50 and 200 nm in length. RecA-K250N, and other toxic variants of RecA, form spontaneous DNA-bound complexes that are independent of replication and of accessory proteins required to load RecA onto tracts of ssDNA in vivo, supporting the hypothesis that RecA's expenditure of ATP serves an error correction function.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN de Cadena Simple/genética , ADN/genética , Rec A Recombinasas/química , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , ADN/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/química , Escherichia coli/genética , Recombinación Homóloga/genética , Hidrólisis , Unión Proteica , Rec A Recombinasas/genética
9.
Methods Enzymol ; 600: 307-320, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458764

RESUMEN

Budding yeast Dmc1 is a member of the RecA family of strand exchange proteins essential for homologous recombination (HR) during meiosis. Dmc1 mediates the steps of homology search and DNA strand exchange reactions that are central to HR. To achieve optimum activity, Dmc1 requires a number of accessory factors. Although methods for purification of Dmc1 and many of its associated factors have been described (Binz, Dickson, Haring, & Wold, 2006; Busygina et al., 2013; Chan, Brown, Qin, Handa, & Bishop, 2014; Chi et al., 2006; Cloud, Chan, Grubb, Budke, & Bishop, 2012; Nimonkar, Amitani, Baskin, & Kowalczykowski, 2007; Van Komen, Macris, Sehorn, & Sung, 2006), Dmc1 has been particularly difficult to purify because of its tendency to aggregate. Here, we provide an alternative and simple high-yield purification method for recombinant Dmc1 that is active and responsive to stimulation by accessory factors. The same method may be used for purification of recombinant Rdh54 (a.k.a. Tid1) and other HR proteins with minor adjustments. We also describe an economical and sensitive D-loop assay for strand exchange proteins that uses fluorescent dye-tagged, rather than radioactive, ssDNA substrates.


Asunto(s)
Proteínas de Ciclo Celular/aislamiento & purificación , ADN Helicasas/aislamiento & purificación , ADN-Topoisomerasas/aislamiento & purificación , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Colorantes Fluorescentes/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Vis Exp ; (102): e53081, 2015 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-26325523

RESUMEN

The small size of nuclei of the budding yeast Saccharomyces cerevisiae limits the utility of light microscopy for analysis of the subnuclear distribution of chromatin-bound proteins. Surface spreading of yeast nuclei results in expansion of chromatin without loss of bound proteins. A method for surface spreading balances fixation of DNA bound proteins with detergent treatment. The method demonstrated is slightly modified from that described by Josef Loidl and Franz Klein. The method has been used to characterize the localization of many chromatin-bound proteins at various stages of the mitotic cell cycle, but is especially useful for the study of meiotic chromosome structures such as meiotic recombinosomes and the synaptonemal complex. We also describe a modification that does not require use of Lipsol, a proprietary detergent, which was called for in the original procedure, but no longer commercially available. An immunostaining protocol that is compatible with the chromosome spreading method is also described.


Asunto(s)
Cromosomas Fúngicos/química , Técnicas Inmunológicas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Microscopía Fluorescente/métodos
11.
Nucleic Acids Res ; 43(14): 6889-901, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26019182

RESUMEN

In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5' to 3' end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5' to 3' resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells.


Asunto(s)
Cafeína/farmacología , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
12.
Nucleic Acids Res ; 43(14): 6902-18, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26019181

RESUMEN

Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1(ATR)/Tel1(ATM)-dependent DNA damage response or caffeine's inhibition of 5' to 3' resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments.


Asunto(s)
Cafeína/farmacología , ADN de Cadena Simple/metabolismo , Conversión Génica/efectos de los fármacos , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
13.
J Cell Sci ; 128(8): 1494-506, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25736290

RESUMEN

Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as '9-1-1' in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51-Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM.


Asunto(s)
Intercambio Genético , Daño del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Complejo Sinaptonémico/metabolismo , Sistema Libre de Células , Cromosomas Fúngicos/genética , Reparación del ADN , ADN de Hongos/genética , Recombinación Homóloga
14.
Nucleic Acids Res ; 43(6): 3180-96, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25765654

RESUMEN

The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Línea Celular Tumoral , Proliferación Celular , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Humanos , Células MCF-7 , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutágenos/metabolismo , Neoplasias/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
15.
Mol Cell ; 57(5): 797-811, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25661491

RESUMEN

During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
16.
PLoS Genet ; 11(12): e1005653, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26719980

RESUMEN

The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs). Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt) Rad51 filaments and also by one or more short Dmc1 filaments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Meiosis , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Recombinasa Rad51/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas
17.
Cold Spring Harb Perspect Biol ; 7(1): a016659, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25475089

RESUMEN

Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/fisiología , Meiosis/fisiología , Modelos Biológicos , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , Animales , Humanos , Modelos Moleculares
18.
J Biol Chem ; 289(26): 18076-86, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24798326

RESUMEN

During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.


Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Exones , Meiosis , Datos de Secuencia Molecular , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
19.
Cancer Res ; 74(13): 3546-55, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24753542

RESUMEN

RAD51 is the central protein that catalyzes DNA repair via homologous recombination, a process that ensures genomic stability. RAD51 protein is commonly expressed at high levels in cancer cells relative to their noncancerous precursors. High levels of RAD51 expression can lead to the formation of genotoxic RAD51 protein complexes on undamaged chromatin. We developed a therapeutic approach that exploits this potentially toxic feature of malignancy, using compounds that stimulate the DNA-binding activity of RAD51 to promote cancer cell death. A panel of immortalized cell lines was challenged with the RAD51-stimulatory compound RS-1. Resistance to RS-1 tended to occur in cells with higher levels of RAD54L and RAD54B, which are Swi2/Snf2-related translocases known to dissociate RAD51 filaments from dsDNA. In PC3 prostate cancer cells, RS-1-induced lethality was accompanied by the formation of microscopically visible RAD51 nuclear protein foci occurring in the absence of any DNA-damaging treatment. Treatment with RS-1 promoted significant antitumor responses in a mouse model, providing proof-of-principle for this novel therapeutic strategy.


Asunto(s)
Benzamidas/farmacología , ADN Helicasas/genética , Neoplasias/genética , Proteínas Nucleares/genética , Recombinasa Rad51/genética , Sulfonamidas/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , ADN Helicasas/biosíntesis , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Proteínas de Unión al ADN , Células HEK293 , Recombinación Homóloga/genética , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/biosíntesis , Unión Proteica , Interferencia de ARN , Recombinasa Rad51/biosíntesis
20.
PLoS Genet ; 9(12): e1003978, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367271

RESUMEN

During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.


Asunto(s)
Proteínas de Ciclo Celular/genética , Intercambio Genético , Proteínas de Unión al ADN/genética , Meiosis/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...