Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 320: 120975, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584855

RESUMEN

The study aimed to explicate the role of microbial co-inoculants for the mitigation of arsenic (As) toxicity in rice. Arsenate (AsV) reducer yeast Debaryomyces hansenii NBRI-Sh2.11 (Sh2.11) with bacterial strains of different biotransformation potential was attempted to develop microbial co-inoculants. An experiment to test their efficacy (yeast and bacterial strains) on plant growth and As uptake was conducted under a stressed condition of 20 mg kg-1 of arsenite (AsIII). A combination of Sh2.11 with an As(III)-oxidizer, Citrobacter sp. NBRI-B5.12 (B5.12), resulted in ∼90% decrease in grain As content as compared to Sh2.11 alone (∼40%). Reduced As accumulation in rice roots under co-treated condition was validated with SEM-EDS analysis. Enhanced As expulsion in the selected combination under in vitro conditions was found to be correlated with higher As content in the soil during their interaction with plants. Selected co-inoculant mediated enhanced nutrient uptake in association with better production of indole acetic acid (IAA) and gibberellic acid (GA) in shoot, support microbial co-inoculant mediated better biomass under stressful condition. Boosted defense response in association with enhanced glutathione-S-transferase (GST) and glutathione reductase (GR), activities under in vitro and in vivo conditions were observed. These results indicated that the As(III) oxidizer-B5.12 accelerated the As detoxification property of the As(V) reducer-Sh2.11. Henceforth, the results confer that the coupled reduction-oxidation process of the co-inoculant reduces the accumulation of As in rice grain. These co-inoculants can be further developed for field trials to achieve higher biomass with alleviated As toxicity in rice.


Asunto(s)
Inoculantes Agrícolas , Arsénico , Arsenitos , Oryza , Contaminantes del Suelo , Arseniatos/toxicidad , Arseniatos/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Saccharomyces cerevisiae , Oryza/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Bacterias/metabolismo , Oxidación-Reducción , Inoculantes Agrícolas/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
2.
Sci Total Environ ; 856(Pt 1): 158944, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152867

RESUMEN

Arsenic (As) has become natural health hazard for millions of people across the world due to its distribution in the food chain. Naturally, it is present in different oxidative states of inorganic [As(V) and As(III)] and organic (DMA, MMA and TMA) forms. Among different mitigation approaches, microbe mediated mitigation of As toxicity is an effective and eco-friendly approach. The present study involves the characterization of bacterial strains containing arsenite methyltransferase (Pseudomonas oleovorans, B4.10); arsenate reductase (Sphingobacterium puteale, B4.22) and arsenite oxidase (Citrobacter sp., B5.12) activity with plant growth promoting (PGP) traits. Efficient reduction of grain As content by 61 % was observed due to inoculation of methyltransferase containing B4.10 as compared to B4.22 (47 %) and B5.12 (49 %). Reduced bioaccumulation of As in root (0.339) and shoot (0.166) in presence of B4.10 was found to be inversely related with translocation factor for Mn (3.28), Fe (0.073), and Se (1.82). Bioaccumulation of these micro elements was found to be associated with the modulated expression of different mineral transporters (OsIRT2, OsFRO2, OsTOM1, OsSultr4;1, and OsZIP2) in rice shoot. Improved dehydrogenase (407 %), and ß-glucosidase (97 %) activity in presence of P. oleovorans (B4.10) as compared to arsenate reductase (198 and 50 %), and arsenite oxidase (134 and 69 %) containing bacteria was also observed. Our finding confers the potential of methyltransferase positive P. oleovorans (B4.10) for As stress amelioration. Reduced grain As uptake was found to be mediated by improved plant growth and nutrient uptake associated with enhanced soil microbial activity.


Asunto(s)
Arsénico , Arsenicales , Arsenitos , Oryza , Pseudomonas oleovorans , Humanos , Arsénico/toxicidad , Arsénico/metabolismo , Arseniato Reductasas/metabolismo , Pseudomonas oleovorans/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Arsenicales/metabolismo , Metiltransferasas , Arsenitos/metabolismo
3.
Ecotoxicol Environ Saf ; 195: 110480, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203774

RESUMEN

Arsenic (As) is a serious threat for environment and human health. Rice, the main staple crop is more prone to As uptake. Bioremediation strategies with heavy metal tolerant rhizobacteria are well known. The main objective of the study was to characterize arsenic-resistant yeast strains, capable of mitigating arsenic stress in rice. Three yeast strains identified as Debaryomyces hansenii (NBRI-Sh2.11), Candida tropicalis (NBRI-B3.4) and Candida dubliniensis (NBRI-3.5) were found to have As reductase activity. D. hansenii with higher As tolerance has As expulsion ability as compared to other two strains. Inoculation of D. hansenii showed improved detoxification through scavenging of reactive oxygen species (ROS) by the modulation of SOD and APX activity under As stress condition in rice. Modulation of defense responsive gene (NADPH, GST, GR) along with arsR and metal cation transporter are the probable mechanism of As detoxification as evident with improved membrane (electrolyte leakage) stability. Reduced grain As (~40% reduction) due to interaction with D. hansenii (NBRI-Sh2.11) further validated it's As mitigation property in rice. To the best of our knowledge D. hansenii has been reported for the first time for arsenic stress mitigation in rice with improved growth and nutrient status of the plant.


Asunto(s)
Arsénico/toxicidad , Debaryomyces/enzimología , Oryza/efectos de los fármacos , Inoculantes Agrícolas , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Biodegradación Ambiental , Candida/enzimología , Debaryomyces/efectos de los fármacos , Debaryomyces/genética , Debaryomyces/metabolismo , Oryza/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...