Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 207: 111245, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430827

RESUMEN

Radioactive scandium-46 microspheres have applications in mapping flow in a chemical reactor through a technique known as radioactive particle tracking (RPT). In the present study a novel microfluidic method has been developed for synthesis of controlled size scandium oxide microspheres. An inline/in-situ mixing of the scandium precursor and gelling agents was implemented which makes the microfluidic platform amenable for truly continuous operation. Microspheres of size varying from 937 to 666 µm were produced by varying O/A ratio from 10 to 30. Perfectly spherical and monodispersed (PDI <10 %) microspheres were obtained at O/A 15 and beyond. The morphology, elemental composition, and structure of the microspheres were analysed by SEM, EDS and XRD, respectively. Subsequently the microspheres were irradiated with thermal neutrons in a nuclear reactor to obtain radioactive Sc-46 oxide microspheres. The activity produced on each Sc-46 microspheres with different sizes was in the range 19.5-34.0 MBq.

2.
Appl Radiat Isot ; 193: 110662, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36652839

RESUMEN

A radiotracer investigation was previously carried out to characterize the flow of the molten glass and to identify the cause of poor quality of the glass sheets produced in an industrial solar glass production unit (SGPU-1) (Pant et al., 2016). Based on the investigations, several flow abnormalities were identified and the design of the unit was modified to improve the quality of the product and meet the product specifications. Subsequently, the radiotracer investigation was repeated in the modified unit (SGPU-1m). The results of the study showed that the dead volume and homogenization time in the modified unit were significantly reduced with improvement in mixing of the molten glass as compared to the SGPU-1. Based on the results of the two investigations, a new glass production unit (SGPU-2) with enhanced capacity was designed, fabricated and commissioned. The radiotracer investigation was repeated in the newly designed unit with an objective to evaluate and validate its design. The results indicated that the performance of SGPU-2 was as per the design criteria and the quality of the glass sheets produced was as per the desired specifications.

3.
Mol Divers ; 27(3): 1101-1121, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35727438

RESUMEN

Diabetes mellitus (DM) is one of the major health problems worldwide. WHO have estimated that 439 million people may have DM by the year 2030. Several classes of drugs such as sulfonylureas, meglitinides, thiazolidinediones etc. are available to manage this disease, however, there is no cure for this disease. Salt inducible kinase 2 (SIK2) is expressed several folds in adipose tissue than in normal tissues and thus SIK2 is one of the attractive targets for DM treatment. SIK2 inhibition improves glucose homeostasis. Several analogues have been reported and experimentally proven against SIK for DM treatment. But, identifying potential SIK2 inhibitors with improved efficacy and good pharmacokinetic profiles will be helpful for the effective treatment of DM. The objective of the present study is to identify selective SIK2 inhibitors with good pharmacokinetic profiles. Due to the unavailability of SIK2 structure, the modeled structure of SIK2 will be an important to understand the atomic level of SIK2 inhibitors in the binding site pocket. In this study, different molecular modeling studies such as Homology Modeling, Molecular Docking, Pharmacophore-based virtual screening, MD simulations, Density Functional Theory calculations and WaterMap analysis were performed to identify potential SIK2 inhibitors. Five molecules from different databases such as Binding_4067, TosLab_837067, NCI_349155, Life chemicals_ F2565-0113, Enamine_7623111186 molecules were identified as possible SIK2 inhibitors.


Asunto(s)
Diabetes Mellitus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sitios de Unión
4.
Appl Radiat Isot ; 185: 110249, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35490591

RESUMEN

The current work describes development and optimization of a process for preparation of cobalt-60 glass microspheres. These microspheres have potential for applications in radioactive particle tracking (RPT) studies in multiphase flow systems. In the first step of preparation, soda lime glass containing 5-10 wt% cobalt oxide was produced through melt-quench method. Subsequently, cobalt glass microspheres (CMSs) were prepared by microwave heating of tiny glass grains in presence of graphite. In the final step, radioactive cobalt-60 microspheres (RMSs) were produced by neutron irradiation of the CMSs in a nuclear reactor. The CMSs were characterized for surface morphology, elemental composition, homogeneity, crystalinity using SEM, EDX and XRD, respectively. The thermal behaviour of the microspheres was characterized by TG and DSC analysis. The size distribution of CMSs analyzed by SEM was found to be in the range 500-2000 µm. The preparation step was optimized to produce adequate activity in a single microsphere, so that they can be utilized for RPT applications.


Asunto(s)
Radioisótopos de Cobalto , Vidrio , Microesferas , Tamaño de la Partícula
5.
J Biomol Struct Dyn ; 40(6): 2740-2756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33155526

RESUMEN

Diabetes is recognized as a major health problem and according to WHO estimates global prevalence of diabetes is expected to increase from 171 million in 2000 to 366 million in 2030, among which 21.7% will be Indians. The chronic nature of diabetes leads to several metabolic complications like kidney failure, cardiac problems and hypertension, etc.Camkk family members are attractive and emerging targets for the development of anti-diabetic drugs. However, the selectivity of inhibitors is a crucial property as a lack of selectivity could lead to serious adverse effects. STO-609 recently reported the role of Camkks a as potent inhibitor. In this study, Combined Molecular Docking and Pharmacophore Mapping were employed to identify potent lead molecules. E-Pharmacophore based virtual screening was performed against commercially available databases to identify the best lead molecule which was docked with the targets and analyzed for the binding pattern. Also, ADME and density function theory (DFT) studies of the compound were performed and the hits that showed good binding to the active sites and that matched with the pharmacophore models were considered as possible functional molecules against Camkk1. The results from e-pharmacophore based virtual screening and MD simulations evidenced that the top three compounds namely (Lifechemicals_1, Zinc_0910993 and Binding_10131) will be a promising inhibitor for Camkk1 family.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Dominio Catalítico , Humanos , Ligandos , Simulación del Acoplamiento Molecular
6.
Comb Chem High Throughput Screen ; 25(4): 660-676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33687876

RESUMEN

AIM: This study aims to develop and establish a computational model that can identify potent molecules for p21-activating kinase 1 (PAK1) Background: PAK1 is a well-established drug target that has been explored for various therapeutic interventions. Control of this protein requires an indispensable inhibitor to curb the structural changes and subsequent activation of signalling effectors responsible for the progression of diseases, such as cancer, inflammatory, viral, and neurological disorders. OBJECTIVE: The study aims to establish a computational model that could identify active molecules which will further provide a platform for developing potential PAK1 inhibitors. METHODS: A congeneric series of 27 compounds were considered for this study, with Ki (nm) covering a minimum of 3 log range. The compounds were developed based on a previously reported Group-I PAK inhibitor, namely G-5555. The 27 compounds were subjected to the SP and XP mode of docking to understand the binding mode, its conformation and interaction patterns. To understand the relevance of biological activity from computational approaches, the compounds were scored against generated water maps to obtain WM/MM ΔG binding energy. Moreover, molecular dynamics analysis was performed for the highly active compound to understand the conformational variability and stability of the complex. We then evaluated the predictable binding pose obtained from the docking studies. RESULTS: From the SP and XP modes of docking, the common interaction pattern with the amino acid residues Arg299 (cation-π), Glu345 (Aromatic hydrogen bond), hinge region Leu347, salt bridges Asp393 and Asp407 was observed, among the congeneric compounds. The interaction pattern was compared with the co-crystal inhibitor FRAX597 of the PAK1 crystal structure (PDB id: 4EQC). The correlation with different docking parameters in the SP and XP modes was insignificant and thereby revealed that the SP and XP's scoring functions could not predict the active compounds. This was due to the limitations in the docking methodology that neglected the receptor flexibility and desolvation parameters. Hence, to recognise the desolvation and explicit solvent effects, as well as to study the Structure-Activity Relationships (SARs) extensively, WaterMap (WM) calculations were performed on the congeneric compounds. Based on displaceable unfavourable hydration sites (HS) and their associated thermodynamic properties, the WM calculations facilitated in understanding the significance of correlation in the folds of activity of highly active (19 and 17), moderately active (16 and 21) and less active (26 and 25) compounds. Furthermore, the scoring function from WaterMap, namely WM/MM, led to a significant R2 value of 0.72 due to a coupled conjunction with MM treatment and displaced unfavourable waters at the binding site. To check the "optimal binding conformation", molecular dynamics simulation was carried out with the highly active compound 19 to explain the binding mode, stability, interactions, solvent-accessible area, etc., which could support the predicted conformation with bioactive conformation. CONCLUSION: This study determined the best scoring function, established SARs and predicted active molecules through a computational model. This will contribute to the development of the most potent PAK1 inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Sitios de Unión , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Unión Proteica , Termodinámica , Agua/química
7.
Mol Biochem Parasitol ; 246: 111427, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34666103

RESUMEN

Lymphatic filariasis is a parasitic disease caused by the worms Wuchereria bancrofti, Brugia malayi and Brugia timori. Three anti-filarial drugs namely Diethylcarbamazine, Ivermectin and Albendazole and their combinations are used as the control strategies for filariasis. The disease has received much attention in drug discovery due to the unavailability of vaccines and the toxic pharmaceutical properties of the existing drugs. In Wolbachia endosymbiont Brugia malayi, the UDP-N-acetylmuramoyl-tripeptide-d-alanyl-d-alanine ligase (MurF) plays a key role in peptidoglycan biosynthesis pathway and therefore can be considered as effective drug target against filariasis disease. Therefore, in the present study, MurF was selected as the therapeutic target to identify specific inhibitors against filariasis. Homology modeling was performed to predict the three-dimensional structure of MurF due to the absence of the experimental structure. Further molecular dynamics simulation and structure-based high throughput virtual screening with three different chemical databases (Zinc, Maybridge and Specs) were carried out to identify potent inhibitors and also to check their conformations inside the binding site of MurF, respectively. Top three compounds with high docking score and high relative binding affinity against MurF were selected. Further, validation studies, including predicted ADME (Absorption, Distribution, Metabolism, Excretion) assessment, binding free energy using MM-GBSA (Molecular Mechanics Generalized Born Surface Area) and DFT (Density Functional Theory) calculations were performed for the top three compounds. From the results, it was observed that all the three compounds were predicted to show high reactivity, acceptable range of pharmacokinetic properties and high binding affinity with the drug target MurF. Overall, the results could provide more understanding on the inhibition of MurF enzyme and the screened compounds could lead to the development of new specific anti-filarial drugs.


Asunto(s)
Brugia Malayi , Filariasis Linfática , Wolbachia , Animales , Filariasis Linfática/parasitología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Wolbachia/metabolismo
8.
ACS Omega ; 6(41): 26829-26845, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693105

RESUMEN

p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis.

9.
Oncogene ; 40(34): 5327-5341, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34253860

RESUMEN

P21 Activated Kinase 1 (PAK1) is an oncogenic serine/threonine kinase known to play a significant role in the regulation of cytoskeleton and cell morphology. Runt-related transcription factor 3 (RUNX3) was initially known for its tumor suppressor function, but recent studies have reported the oncogenic role of RUNX3 in various cancers. Previous findings from our laboratory provided evidence that Threonine 209 phosphorylation of RUNX3 acts as a molecular switch in dictating the tissue-specific dualistic functions of RUNX3 for the first time. Based on these proofs and to explore the translational significance of these findings, we designed a small peptide (RMR) from the protein sequence of RUNX3 flanking the Threonine 209 phosphorylation site. The selection of this specific peptide from multiple possible peptides was based on their binding energies, hydrogen bonding, docking efficiency with the active site of PAK1 and their ability to displace PAK1-RUNX3 interaction in our prediction models. We found that this peptide is stable both in in vitro and in vivo conditions, not toxic to normal cells and inhibits the Threonine 209 phosphorylation in RUNX3 by PAK1. We also tested the efficacy of this peptide to block the RUNX3 Threonine 209 phosphorylation mediated tumorigenic functions in in vitro cell culture models, patient-derived explant (PDE) models and in in vivo tumor xenograft models. These results proved that this peptide has the potential to be developed as an efficient therapeutic molecule for targeting RUNX3 Threonine 209 phosphorylation-dependent tumor phenotypes.


Asunto(s)
Quinasas p21 Activadas , Carcinogénesis , Humanos , Oncogenes , Fosforilación , Proteínas Serina-Treonina Quinasas , Treonina
10.
Appl Radiat Isot ; 168: 109380, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33339702

RESUMEN

Radioactive particle tracking (RPT) technique is a relatively newer technique for the characterization of flow of process materials (liquids, solids) in laboratory- and pilot-scale industrial systems. The technique uses a single particle labelled with a suitable radioisotope having similar physical properties to that of the bulk of the process material. The preparation of a representative radioactive microparticle is a challenging task in the implementation of the technique. There are no standard methods available for the preparation of radioactive microparticles. This paper discusses some of the methods of preparation of radioactive microparticles for RPT studies. A few examples of RPT applications using the prepared microparticles are also discussed.


Asunto(s)
Microesferas , Radioisótopos/química , Radiometría/métodos , Tamaño de la Partícula
11.
J Biomol Struct Dyn ; 39(9): 3144-3157, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32338152

RESUMEN

Pyrimidine biosynthetic pathway enzymes constitute an important target for the development of antitumor drugs. To understand the role of binding mechanisms underlying the inborn errors of pyrimidine biosynthetic pathway, structure and function of enzymes have been analyzed. Pyrimidine biosynthetic pathway is initiated by CAD enzymes that harbor the first three enzymatic activities facilitated by Carbamoyl Phosphate Synthetase (CPSase), Aspartate Transcarbamoylase (ATCase) and Dihydroorotase (DHOase). While being an attractive therapeutic target, the lack of data driven us to study the CPSase (CarA and CarB) and its mode of binding to ATCase and DHOase which are the major limitation for its structural optimization. Understanding the binding mode of CPSase, ATCase and DHOase could help to identify the potential interface hotspot residues that favor the mechanism behind it. The mechanistic insight into the CAD complexes were achieved through Molecular modeling, Protein-Protein docking, Alanine scanning and Molecular dynamics (MD) Studies. The hotspot residues present in the CarB region of carboxy phosphate and carbamoyl phosphate synthetic domains are responsible for the assembly of CAD (CPSase-ATCase-DHOase) complexes. Overall analysis suggests that the identified hotspot residues were confirmed by alanine scanning and important for the regulation of pyrimidine biosynthesis. MD simulations analysis provided the prolonged stability of the interacting complexes. The present study reveals the novel hotspot residues such as Glu134, Glu147, Glu154, Asp266, Lys269, Glu274, Asp333, Trp459, Asp526, Asp528, Glu533, Glu544, Glu546, Glu800, Val855, Asp877, Tyr884 and Gln919 which could be targeted for structure-based inhibitor design to potentiate the CAD mediated regulation of aggressive tumors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aspartato Carbamoiltransferasa , Dihidroorotasa , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Modelos Moleculares , Proteínas
12.
J Biomol Struct Dyn ; 38(1): 13-31, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30661460

RESUMEN

p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Termodinámica , Agua/química , Quinasas p21 Activadas/química , Sitios de Unión , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Enlace de Hidrógeno , Ligandos , Estructura Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Quinasas p21 Activadas/antagonistas & inhibidores
13.
J Recept Signal Transduct Res ; 39(1): 28-38, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31241401

RESUMEN

Vanishing white matter (VWM) is a hereditary human disease, mostly prevalent in childhood caused by the defects in the eukaryotic initiation factor beta subunits. It is the first disease involved in the translation initiation factor, eIF2B. There is no specific treatment for VWM which mainly affect the brain and ovaries. The gray matter remains normal in all characteristics while the white matter changes texture, coming to the pathophysiology, many initiation factors are involved in the initiation of translation of mRNAs into polypeptides. In this study, the three-dimensional structure of PhMTNA protein was modeled and the stability ascertained through Molecular dynamic simulation (MDS) for 100 ns. The active site residues are conserved with the reported BsMTNA structure which is also confirmed through sitemap prediction. Through virtual screening and induced fit docking, top five leads against PhMTNA protein was identified based on their binding mode and affinity. ADME properties and DFT (Density Functional Theory) studies of these compounds were studied. In addition to that, computational mutagenesis studies were performed to identify the hotspot residues involved in the protein-ligand interactions. Overall analysis showed that the compound NCI_941 has a highest binding energy of -46.256 kcal mol-1 in the Arg57Ala mutant. Thus, the results suggest that NCI_941 would act as a potent inhibitor against PhMTNA protein.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Isomerasas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Dominio Catalítico , Humanos , Isomerasas/metabolismo , Ligandos , Unión Proteica
14.
J Comput Biol ; 26(5): 457-472, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30785305

RESUMEN

In bacterial and archaeal purine biosynthetic pathways, sixth step involves utilization of enzyme PurE, catalyzing the translation of aminoimidazole ribonucleotide to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) with carbon dioxide. The formation of CAIR takes place through an unstable intermediate N5-CAIR, played by two enzymes-N5-CAIR synthetase (PurK) and N5-CAIR mutase (PurE) that further catalyzes the reaction of N5-CAIR to CAIR. In this study, N5-CAIR mutase (PH0320) from Pyrococcus horikoshii OT3 (PurE) was considered. The three-dimensional structure of Pyrococcus horikoshii OT3 was modeled based on the structure of PurE from Escherichia coli. The modeled structure was subjected to molecular dynamics simulation up to 100 ns, and least energy structure from the simulation was subjected to virtual screening and induced fit docking to identify the best potent leads. A total of five best antagonists were identified based on their affinity and mode of binding leading with conserved residues Ser18, Ser20, Asp21, Ser45, Ala46, His47, Arg48, Ala72, Gly73, Ala75, and His77 promotes the activity of Ph-N5-CAIR mutase. In addition to molecular dynamics, absorption, digestion, metabolism, and excretion properties, binding free energy and density functional theory calculations of compounds were carried out. Based on analyses, compound from National Cancer Institute (NCI) database, NCI_826 was adjudged as the best potent lead molecule and could be suggested as the suitable inhibitor of N5-CAIR mutase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferasas Intramoleculares/metabolismo , Pyrococcus horikoshii/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Purinas/metabolismo , Ribonucleótidos/metabolismo
15.
Appl Radiat Isot ; 135: 201-206, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29413838

RESUMEN

Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied.

16.
Appl Radiat Isot ; 116: 41-50, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27474905

RESUMEN

A radiotracer investigation was carried out in a glass production unit in a glass industry. Lanthanum-140 as lanthanium oxide mixed with silica was used as a radiotracer to trace the molten glass in various sections of the unit. Residence time distributions of molten glass were measured and analyzed to identify the flow abnormities. The flow parameters such as breakthrough time, mean residence time, homogenization time, dead volume and flow patterns in different sections of the unit were obtained from the measured RTD data. The results of the investigation were used to improve and optimize the operation of the glass production unit.

17.
Appl Radiat Isot ; 112: 89-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27016711

RESUMEN

Discharge rates of water were measured in a canal using radiotracer methods with an objective to validate the efficacy of Concrete Volute Pumps (CVPs) installed at various pumping stations along the canal. Pulse velocity and dilution methods were applied to measure the discharge rates using Iodine-131 as a radiotracer. The discharge rate measured in one of the sections of the canal using the pulse velocity method was found to be 22.5m(3)/s, whereas the discharge rates measured using the dilution method in four different sections of the canal varied from 20.27 to 20.62m(3)/s with single CVP in operation. The standard error in discharge rate measurements using dilution method ranged from ±1.1 to ±1.8%. The experimentally measured values of the discharge rate were in good agreement with the design value of the discharge rate (20m(3)/s) thus validating the performance of the CVPs used in the canal.

18.
Appl Radiat Isot ; 111: 18-25, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26897465

RESUMEN

This paper describes synthesis and characterization of radioactive gold nanoparticles ((198)Au-NPs), and explores their utility as a radiotracer for tracing an aqueous phase in a continuous laboratory-scale bubble column at ambient conditions. The performance of the (198)Au-NPs as a radiotracer was compared with the results obtained with a conventional radiotracer i.e. bromine-82 ((82)Br) as ammonium bromide and found to be identical. A tank-in-series with backmixing model (TISBM) was used to simulate the RTDs of the aqueous phase and characterize flow in the bubble column.

19.
Gene ; 583(2): 102-111, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26861612

RESUMEN

Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Simulación de Dinámica Molecular , Orotato Fosforribosiltransferasa/química , Ácido Orótico/química , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Orotato Fosforribosiltransferasa/antagonistas & inhibidores , Orotato Fosforribosiltransferasa/metabolismo , Ácido Orótico/metabolismo , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Thermus thermophilus/química
20.
Appl Radiat Isot ; 111: 10-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26896681

RESUMEN

A series of radiotracer experiments was carried out to measure residence time distribution (RTD) of liquid phase (alkali) in an industrial-scale continuous pulp digester in a paper industry in India. Bromine-82 as ammonium bromide was used as a radiotracer. Experiments were carried out at different biomass and white liquor flow rates. The measured RTD data were treated and mean residence times in individual digester tubes as well in the whole digester were determined. The RTD was also analyzed to identify flow abnormalities and investigate flow dynamics of the liquid phase in the pulp digester. Flow channeling was observed in the first section (tube 1) of the digester. Both axial dispersion and tanks-in-series with backmixing models preceded with a plug flow component were used to simulate the measured RTD and quantify the degree of axial mixing. Based on the study, optimum conditions for operating the digester were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...