Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17545, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845251

RESUMEN

Disposal of significant tonnages of rice straw is expensive, but using it to mobilise phosphorus (P) from inorganically fixed pools in the soil may add value. This study was carried out to determine whether the use of rice straw mixed with phosphorus-solubilizing microbes could solubilize a sizable portion fixed soil P and affect P transformation, silicon (Si) concentration, organic acid concentrations, and enzyme activity to increase plant growth. Depending on the soil temperature, the application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes could solubilize 3.4-3.6% of inorganic P, and minimised the hysteresis impact by 6-8%. At plant maturity, application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes and 75% of recommended P application raised the activity of dehydrogenase, alkaline phosphatase activity, cellulase, and peroxidase by 77, 65, 87, and 82% in soil, respectively. It also boosted Si concentration in the soil by 58%. Wheat grain yield was 40% and 18% higher under rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% of recommended P application than under no and 100% P application, respectively. Rice grain yield also increased significantly with the same treatment. Additionally, it increased root volume, length, and P uptake by 2.38, 1.74 and 1.62-times above control for wheat and 1.98, 1.67, and 2.06-times above control for rice, respectively. According to path analysis, P solubilisation by Si and organic acids considerably increased (18-32%) P availability in the rhizosphere. Therefore, cultivators could be advised to use rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% P of mineral P fertiliser to save 25% P fertiliser without reducing wheat and rice yield.


Asunto(s)
Oryza , Suelo , Suelo/química , Fósforo , Triticum , Fertilizantes/análisis , Grano Comestible/química , Compuestos Orgánicos/análisis , Agricultura
2.
Environ Res ; 216(Pt 2): 114583, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265602

RESUMEN

The unintended impact of natural summer fire on soil is complicated and rather less studied than its above-ground impact. Recognising the impact of a fire on silvopastoral soils and their resilience can aid in improving the management of silvopastoral systems. We studied the immediate (after 1 week (W)) and short-term (after 3 months (M)) recovery of different soil biological and chemical properties after the natural fire, with specific emphasis on phosphorus (P) dynamics. Soil samples were collected from four different layers (0-15, 15-30, 30-45, and 45-60 cm) of Morus alba, Leucaena leucocephala, and Ficus infectoria based silvopastoral systems. In the 0-15 cm soil layer, soil organic carbon (SOC) declined by ∼37, 42, and 30% after the fire in Morus-, Leucaena-, and Ficus-based systems, respectively within 1W of fire. However, after 3M of fire, Morus and Leucaena regained ∼6 and 11.5% SOC as compared to their status after 1W in the 0-15 cm soil layer. After 1W of the fire, soil nitrogen (N), sulfur (S), and potassium availability declined significantly at 0-15 cm soil layer in all systems. Iron and manganese availability improved significantly after 1W of the fire. Saloid bound P and aluminium bound P declined significantly immediately after the fire, increasing availability in all systems. However, calcium bound P did not change significantly after the fire. Dehydrogenase and alkaline phosphatase activity declined significantly after the fire, however, phenol oxidase and peroxidase activity were unaltered. Resiliencies of these soil properties were significantly impacted by soil depth and time. Path analysis indicated microbial activity and cationic micronutrients majorly governed the resilience of soil P fractions and P availability. Pasture yield was not significantly improved after the fire, so natural summer fire must be prevented to avoid loss of SOC, N, and S.


Asunto(s)
Incendios , Suelo , Suelo/química , Fósforo , Carbono/análisis , Nitrógeno/análisis , Cationes
3.
J Environ Manage ; 318: 115559, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753129

RESUMEN

It is imperative to find suitable strategies to utilize the native soil phosphorus (P), as natural rock phosphate deposits are at a verge of depletion. We explored two such cost-effective and eco-friendly strategies for native soil P solubilization: silicon (Si)-rich agro-wastes (as Si source) and phosphate solubilizing microorganism (PSM). An incubation study was conducted in a sub-tropical Alfisol for 90 days at 25 °C under field capacity moisture. A factorial completely randomized design with 3 factors, namely: Si sources (three levels: sugarcane bagasse ash, rice husk ash, and corn cob ash), PSM (two levels: without PSM, and with PSM); and Si doses [three levels: no Si (Si0), 125 (Si125) and 250 (Si250) mg Si kg-1 soil] was followed. The PSM increased solution P and soluble Si level by ∼22.2 and 1.88%, respectively, over no PSM; whereas, Si125 and Si250 increased solution P by ∼60.4 and 77.1%, as well as soluble Si by ∼41.5 and 55.5%, respectively, over Si0. Also, interaction of PSM × Si doses was found significant (P<0.05). Activities of soil enzymes (dehydrogenase, acid phosphatase) and microbial biomass P also increased significantly both with PSM and Si application. Overall, PSM solubilized ∼4.18 mg kg-1 of inorganic P and mineralized ∼5.92 mg kg-1 of organic P; whereas, Si125 and Si250 solubilized ∼3.85 and 5.72 mg kg-1 of inorganic P, and mineralized ∼4.15 and 5.37 mg kg-1 of organic P, respectively. Path analysis revealed that inorganic P majorly contributed to total P solubilization; whereas, soluble and loosely bound, iron bound and aluminium bound P significantly influenced the inorganic P solubilization. Thus, utilization of such wastes as Si sources will not only complement the costly P fertilizers, but also address the waste disposal issue in a sustainable manner.


Asunto(s)
Saccharum , Suelo , Celulosa , Fosfatos/metabolismo , Fósforo/metabolismo , Saccharum/metabolismo , Silicio , Microbiología del Suelo
4.
Environ Sci Pollut Res Int ; 28(33): 45946-45961, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33881692

RESUMEN

Limited information is available on the C stabilization mechanism of tropical soils under different management practices including long-term organic manuring, mineral fertilization alone, or in combination with lime. Hence, to understand the effect of continuous application (for 60 years) of organic manure, fertilizer, and lime alone or in combination on an acidic Alfisol, stabilization of soil organic carbon (SOC) was evaluated under maize (Zea mays L.) wheat (Triticum aestivum L.) cropping. There were eight treatments that included farmyard manure (FYM) and nitrogen (N) applied in terms of FYM, additional dose of phosphorus (P) and potassium (K) applied in terms of inorganic fertilizer (FYM + P'K'), FYM + P'K' with liming (FYM + P'K' + L) and NPK alone. These treatments were laid in a randomized block design with three replications. Results indicated that FYM + P'K' plots had maximum amount of SOC inside large macroaggregates. The value was 33 and 92% greater than only minerally fertilized (NPK) and unfertilized control plots, respectively, whereas microaggregate-associated C was highest in plots with FYM + P'K' and lime (FYM + P'K' + L), which was 48 and 183% more than unfertilized control and NPK plots, respectively. Inside soil microaggregates, plots under FYM + P'K' had highest labile C, while NPK + L plots had highest recalcitrant C. Plots with organic amendments contained higher glomalin in large macroaggregates. Plots treated with FYM + P'K' had maximum intra-aggregate particulate organic matter within microaggregates inside macroaggregates (iPOM_mM), which was 28 and 74% higher than NPK and unfertilized control plots, respectively. Total C stock inside the protected microaggregates within macroaggregates was maximum for FYM + P'K' plots. It had 38, 67, and 171% higher C stock than NPK, FYM, and unfertilized control plots, respectively. Interestingly, despite estimated C input in FYM-treated plots was much higher than NPK plots, FYM-treated plots had less C stabilization within microaggregates and within microaggregates inside macroaggregates. Microaggregates within macroaggregates accounted for ~54% of the recalcitrant C content. Thus, macroaggregates stabilization through occlusion of microaggregates was accountable for sequestration of SOC and only FYM application did not promote that mechanism compared to NPK. Carbon stabilization within macroaggregates under FYM plots was mainly governed by amorphous iron oxide.


Asunto(s)
Carbono , Suelo , Agricultura , Compuestos de Calcio , Fertilización , Fertilizantes/análisis , Estiércol , Óxidos
5.
Carbohydr Polym ; 259: 117679, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33673984

RESUMEN

Sufficient hydroxyl moiety, ease of accessibility, biodegradability and reaction compatibility with other molecules make starch a basic ingredient for polymeric synthesis and to prepare encapsulated controlled release fertilizers. This article aims to prepare biodegradable clay-polymeric (starch/PVA) blended encapsulating films (CPSBs) from starch/PVA and economically feasible clay-fractioned bentonite for CPSB-encapsulated diammonium phosphate (DAP) production. The XRD, TEM and FTIR spectroscopy recognized the compatibility of bentonite with starch/PVA blend; several micropores in CPSB surface was visible through SEM. Relative crystallinity index, density of CPSBs increased with increasing bentonite content (0-20 wt%); but, porosity, water absorption was decreased. Half-life of CPSB-10 was 37.4, 40.1 and 51.9 days with Aspergillus awamori, Trichoderma viride and uninoculated soil, respectively. Nitrogen (N) and phosphorus (P) release data from CPSB-encapsulated-DAP and uncoated DAP fitted well to Korsmeyer-Peppas model. Overall, greater bentonite content stabilizes the CPSB structure and CPSB-encapsulation reduced the N and P release from DAP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA