Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010385, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070313

RESUMEN

Stem cells are essential for the development and long-term maintenance of tissues and organisms. Preserving tissue homeostasis requires exquisite control of all aspects of stem cell function: cell potency, proliferation, fate decision and differentiation. RNA binding proteins (RBPs) are essential components of the regulatory network that control gene expression in stem cells to maintain self-renewal and long-term homeostasis in adult tissues. While the function of many RBPs may have been characterized in various stem cell populations, how these interact and are organized in genetic networks remains largely elusive. In this report, we show that the conserved RNA binding protein IGF2 mRNA binding protein (Imp) is expressed in intestinal stem cells (ISCs) and progenitors in the adult Drosophila midgut. We demonstrate that Imp is required cell autonomously to maintain stem cell proliferative activity under normal epithelial turnover and in response to tissue damage. Mechanistically, we show that Imp cooperates and directly interacts with Lin28, another highly conserved RBP, to regulate ISC proliferation. We found that both proteins bind to and control the InR mRNA, a critical regulator of ISC self-renewal. Altogether, our data suggests that Imp and Lin28 are part of a larger gene regulatory network controlling gene expression in ISCs and required to maintain epithelial homeostasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Intestinos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
2.
Stem Cell Reports ; 14(2): 226-240, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32032550

RESUMEN

Robust production of terminally differentiated cells from self-renewing resident stem cells is essential to maintain proper tissue architecture and physiological functions, especially in high-turnover tissues. However, the transcriptional networks that precisely regulate cell transition and differentiation are poorly understood in most tissues. Here, we identified Sox100B, a Drosophila Sox E family transcription factor, as a critical regulator of adult intestinal stem cell differentiation. Sox100B is expressed in stem and progenitor cells and required for differentiation of enteroblast progenitors into absorptive enterocytes. Mechanistically, Sox100B regulates the expression of another critical stem cell differentiation factor, Sox21a. Supporting a direct control of Sox21a by Sox100B, we identified a Sox21a intronic enhancer that is active in all intestinal progenitors and directly regulated by Sox100B. Taken together, our results demonstrate that the activity and regulation of two Sox transcription factors are essential to coordinate stem cell differentiation and proliferation and maintain intestinal tissue homeostasis.


Asunto(s)
Envejecimiento/genética , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Intestinos/citología , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Animales , Secuencia de Bases , Proliferación Celular , Cuerpos Embrioides/citología , Elementos de Facilitación Genéticos/genética , Genes Reporteros , Intrones/genética , Factores de Transcripción SOXB2/metabolismo , Células Madre/metabolismo
3.
PLoS Genet ; 15(12): e1008553, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841513

RESUMEN

Many tissues rely on resident stem cell population to maintain homeostasis. The balance between cell proliferation and differentiation is critical to permit tissue regeneration and prevent dysplasia, particularly following tissue damage. Thus, understanding the cellular processes and genetic programs that coordinate these processes is essential. Here, we report that the conserved transcription factor zfh2 is specifically expressed in Drosophila adult intestinal stem cell and progenitors and is a critical regulator of cell differentiation in this lineage. We show that zfh2 expression is required and sufficient to drive the activation of enteroblasts, the non-proliferative progenitors of absorptive cells. This transition is characterized by the transient formation of thin membrane protrusions, morphological changes characteristic of migratory cells and compensatory stem cell proliferation. We found that zfh2 acts in parallel to insulin signaling and upstream of the TOR growth-promoting pathway during early differentiation. Finally, maintaining zfh2 expression in late enteroblasts blocks terminal differentiation and leads to the formation of highly dysplastic lesions, defining a new late cell differentiation transition. Together, our study greatly improves our understanding of the cascade of cellular changes and regulatory steps that control differentiation in the adult fly midgut and identifies zfh2 as a major player in these processes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Mucosa Intestinal/citología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Insulina/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Transducción de Señal , Células Madre/metabolismo
4.
Aging (Albany NY) ; 11(3): 855-873, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30713156

RESUMEN

Age-related decline in stem cell function is observed in many tissues from invertebrates to humans. While cell intrinsic alterations impair stem cells, aging of the stem cell niche also significantly contributes to the loss of tissue homeostasis associated with reduced regenerative capacity. Hub cells, which constitute the stem cell niche in the Drosophila testis, exhibit age-associated decline in number and activities, yet underlying mechanisms are not fully understood. Here we show that Lin28, a highly conserved RNA binding protein, is expressed in hub cells and its expression dramatically declines in old testis. lin28 mutant testes exhibit hub cell loss and defective hub architecture, recapitulating the normal aging process. Importantly, maintained expression of Lin28 prolongs hub integrity and function in aged testes, suggesting that Lin28 decline is a driver of hub cell aging. Mechanistically, the level of unpaired (upd), a stem cell self-renewal factor, is reduced in lin28 mutant testis and Lin28 protein directly binds and stabilizes upd transcripts, in a let-7 independent manner. Altogether, our results suggest that Lin28 acts to protect upd transcripts in hub cells, and reduction of Lin28 in old testis leads to decreased upd levels, hub cell aging and loss of the stem cell niche.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Unión al ARN/metabolismo , Nicho de Células Madre , Testículo/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Masculino , Proteínas de Unión al ARN/genética , Factores de Transcripción STAT/metabolismo , Testículo/citología , Factores de Transcripción/metabolismo
5.
Development ; 145(8)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29615466

RESUMEN

The Drosophila ovary serves as a model for pioneering studies of stem cell niches, with defined cell types and signaling pathways supporting both germline and somatic stem cells. The establishment of the niche units begins during larval stages with the formation of terminal filament-cap structures; however, the genetics underlying their development remains largely unknown. Here, we show that the transcription factor Lmx1a is required for ovary morphogenesis. We found that Lmx1a is expressed in early ovarian somatic lineages and becomes progressively restricted to terminal filaments and cap cells. We show that Lmx1a is required for the formation of terminal filaments, during the larval-pupal transition. Finally, our data demonstrate that Lmx1a functions genetically downstream of Bric-à-Brac, and is crucial for the expression of key components of several conserved pathways essential to ovarian stem cell niche development. Importantly, expression of chicken Lmx1b is sufficient to rescue the null Lmx1a phenotype, indicating functional conservation across the animal kingdom. These results significantly expand our understanding of the mechanisms controlling stem cell niche development in the fly ovary.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas con Homeodominio LIM/metabolismo , Ovario/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Linaje de la Célula , Pollos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genes de Insecto , Proteínas con Homeodominio LIM/genética , Mutación , Ovario/citología , Ovario/metabolismo , Transducción de Señal , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología , Factores de Transcripción/genética
7.
Dev Biol ; 426(1): 8-16, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28445691

RESUMEN

Adult stem cell proliferation rates are precisely regulated to maintain long-term tissue homeostasis. Defects in the mechanisms controlling stem cell proliferation result in impaired regeneration and hyperproliferative diseases. Many stem cell populations increase proliferation in response to tissue damage and reacquire basal proliferation rates after tissue repair is completed. Although proliferative signals have been extensively studied, much less is known about the molecular mechanisms that restore stem cell quiescence. Here we show that Tis11, an Adenine-uridine Rich Element (ARE) binding protein that promotes mRNA degradation, is required to re-establish basal proliferation rates of adult Drosophila intestinal stem cells (ISC) after a regenerative episode. We find that Tis11 limits ISC proliferation specifically after proliferation has been stimulated in response to heat stress or infection, and show that Tis11 expression and activity are increased in ISCs during tissue repair. Based on stem cell transcriptome analysis and RNA immunoprecipitation, we propose that Tis11 activation represents an integral part of a negative feedback mechanism that limits the expression of key components of several signaling pathways that control ISC function and proliferation. Our results identify Tis11 mediated mRNA decay as an evolutionarily conserved mechanism of re-establishing basal proliferation rates of stem cells in regenerating tissues.


Asunto(s)
Células Madre Adultas/citología , Proliferación Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Infecciones por Enterobacteriaceae , Activación Enzimática/genética , Perfilación de la Expresión Génica , Inmunoprecipitación , Intestinos/citología , Pectobacterium carotovorum , Interferencia de ARN , ARN Interferente Pequeño/genética , Regeneración/genética
8.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264606

RESUMEN

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Longevidad , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Restricción Calórica , Inestabilidad Genómica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxidación-Reducción , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Transducción de Señal
9.
Cell Stem Cell ; 18(4): 429-30, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058932

RESUMEN

While sex differences in hormonal regulation of development and tissue maintenance are well established, the importance of genetic sex determination in adult lineages remains largely unexplored. Two studies now report that reversing the genetic sex of progenitors or differentiated cells in the fly intestine dramatically affects epithelial homeostasis and longevity.

10.
Dev Biol ; 413(1): 50-9, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26972874

RESUMEN

Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD.


Asunto(s)
Apoptosis , Proteínas de Drosophila/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Caspasas/metabolismo , Proliferación Celular , Cruzamientos Genéticos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Eliminación de Gen , Homeostasis , Homocigoto , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Metamorfosis Biológica , Morfogénesis , Mutación , Fenotipo , Retina/embriología
11.
Cell Rep ; 13(5): 906-14, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565904

RESUMEN

Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs) in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular , Proteínas de Drosophila/metabolismo , Intestinos/citología , Factores de Transcripción SOXB2/metabolismo , Células Madre Adultas/fisiología , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción SOXB2/genética
12.
Cell Rep ; 7(6): 1867-75, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24931602

RESUMEN

In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Intestinos/citología , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Sistema Endocrino/citología , Femenino , Mucosa Intestinal/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Transducción de Señal , Proteínas Roundabout
13.
Cell Rep ; 4(6): 1250-61, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24035390

RESUMEN

Loss of metabolic homeostasis is a hallmark of aging and is commonly characterized by the deregulation of adaptive signaling interactions that coordinate energy metabolism with dietary changes. The mechanisms driving age-related changes in these adaptive responses remain unclear. Here, we characterize the deregulation of an adaptive metabolic response and the development of metabolic dysfunction in the aging intestine of Drosophila. We find that activation of the insulin-responsive transcription factor Foxo in intestinal enterocytes is required to inhibit the expression of evolutionarily conserved lipases as part of a metabolic response to dietary changes. This adaptive mechanism becomes chronically activated in the aging intestine, mediated by changes in Jun-N-terminal kinase (JNK) signaling. Age-related chronic JNK/Foxo activation in enterocytes is deleterious, leading to sustained repression of intestinal lipase expression and the disruption of lipid homeostasis. Changes in the regulation of Foxo-mediated adaptive responses thus contribute to the age-associated breakdown of metabolic homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción Forkhead/metabolismo , Metabolismo de los Lípidos/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Homeostasis , Endogamia , Mucosa Intestinal/metabolismo , Intestinos/enzimología , MAP Quinasa Quinasa 4/metabolismo , Masculino , Transducción de Señal , Factores de Transcripción/metabolismo
14.
PLoS Genet ; 8(11): e1003045, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144631

RESUMEN

Epithelial homeostasis in the posterior midgut of Drosophila is maintained by multipotent intestinal stem cells (ISCs). ISCs self-renew and produce enteroblasts (EBs) that differentiate into either enterocytes (ECs) or enteroendocrine cells (EEs) in response to differential Notch (N) activation. Various environmental and growth signals dynamically regulate ISC activity, but their integration with differentiation cues in the ISC lineage remains unclear. Here we identify Notch-mediated repression of Tuberous Sclerosis Complex 2 (TSC2) in EBs as a required step in the commitment of EBs into the EC fate. The TSC1/2 complex inhibits TOR signaling, acting as a tumor suppressor in vertebrates and regulating cell growth. We find that TSC2 is expressed highly in ISCs, where it maintains stem cell identity, and that N-mediated repression of TSC2 in EBs is required and sufficient to promote EC differentiation. Regulation of TSC/TOR activity by N signaling thus emerges as critical for maintenance and differentiation in somatic stem cell lineages.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Células Madre Multipotentes , Receptores Notch , Animales , Linaje de la Célula/genética , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Enterocitos/citología , Enterocitos/metabolismo , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestinos/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
15.
Cell Stem Cell ; 9(5): 402-11, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22056138

RESUMEN

Long-term maintenance of tissue homeostasis relies on the accurate regulation of somatic stem cell activity. Somatic stem cells have to respond to tissue damage and proliferate according to tissue requirements while avoiding overproliferation. The regulatory mechanisms involved in these responses are now being unraveled in the intestinal epithelium of Drosophila, providing new insight into strategies and mechanisms of stem cell regulation in barrier epithelia. Here, we review these studies and highlight recent findings in vertebrate epithelia that indicate significant conservation of regenerative strategies between vertebrate and fly epithelia.


Asunto(s)
Homeostasis , Especificidad de Órganos , Células Madre/citología , Animales , Proliferación Celular , Humanos , Intestinos/citología , Oxidación-Reducción , Células Madre/metabolismo
16.
Dev Cell ; 20(2): 233-43, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21316590

RESUMEN

Regulated adhesion between cells and their environment is critical for normal cell migration. We have identified mutations in a gene encoding the Drosophila hydrogen peroxide (H2O2)-degrading enzyme Jafrac1, which lead to germ cell adhesion defects. During gastrulation, primordial germ cells (PGCs) associate tightly with the invaginating midgut primordium as it enters the embryo; however, in embryos from jafrac1 mutant mothers this association is disrupted, leaving some PGCs trailing on the outside of the embryo. We observed similar phenotypes in embryos from DE-cadherin/shotgun (shg) mutant mothers and were able to rescue the jafrac1 phenotype by increasing DE-cadherin levels. This and our biochemical evidence strongly suggest that Jafrac1-mediated reduction of H2O2 is required to maintain DE-cadherin protein levels in the early embryo. Our results present in vivo evidence of a peroxiredoxin regulating DE-cadherin-mediated adhesion.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Células Germinativas/citología , Células Germinativas/enzimología , Peroxidasas/metabolismo , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Animales , Cadherinas/genética , Adhesión Celular/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Endocitosis/efectos de los fármacos , Gastrulación/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
17.
Development ; 138(6): 1045-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307097

RESUMEN

Precise control of somatic stem cell proliferation is crucial to ensure maintenance of tissue homeostasis in high-turnover tissues. In Drosophila, intestinal stem cells (ISCs) are essential for homeostatic turnover of the intestinal epithelium and ensure epithelial regeneration after tissue damage. To accommodate these functions, ISC proliferation is regulated dynamically by various growth factors and stress signaling pathways. How these signals are integrated is poorly understood. Here, we show that EGF receptor signaling is required to maintain the proliferative capacity of ISCs. The EGF ligand Vein is expressed in the muscle surrounding the intestinal epithelium, providing a permissive signal for ISC proliferation. We find that the AP-1 transcription factor FOS serves as a convergence point for this signal and for the Jun N-terminal kinase (JNK) pathway, which promotes ISC proliferation in response to stress. Our results support the notion that the visceral muscle serves as a functional 'niche' for ISCs, and identify FOS as a central integrator of a niche-derived permissive signal with stress-induced instructive signals, adjusting ISC proliferation to environmental conditions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Drosophila melanogaster , Factor de Crecimiento Epidérmico/fisiología , Intestinos/fisiología , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Activación Enzimática/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/metabolismo
18.
Cell Stem Cell ; 8(2): 188-99, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295275

RESUMEN

In Drosophila, intestinal stem cells (ISCs) respond to oxidative challenges and inflammation by increasing proliferation rates. This phenotype is part of a regenerative response, but can lead to hyperproliferation and epithelial degeneration in the aging animal. Here we show that Nrf2, a master regulator of the cellular redox state, specifically controls the proliferative activity of ISCs, promoting intestinal homeostasis. We find that Nrf2 is constitutively active in ISCs and that repression of Nrf2 by its negative regulator Keap1 is required for ISC proliferation. We further show that Nrf2 and Keap1 exert this function in ISCs by regulating the intracellular redox balance. Accordingly, loss of Nrf2 in ISCs causes accumulation of reactive oxygen species and accelerates age-related degeneration of the intestinal epithelium. Our findings establish Keap1 and Nrf2 as a critical redox management system that regulates stem cell function in high-turnover tissues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Intestinos/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre/citología , Animales , Proliferación Celular , Drosophila , Proteínas de Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Microscopía , Modelos Biológicos , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
19.
Exp Gerontol ; 46(5): 349-54, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21111799

RESUMEN

Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Longevidad/fisiología , Transducción de Señal/fisiología , Animales , Modelos Animales
20.
PLoS Genet ; 6(10): e1001159, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20976250

RESUMEN

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


Asunto(s)
Proliferación Celular , Drosophila melanogaster/crecimiento & desarrollo , Longevidad , Células Madre/citología , Animales , Animales Modificados Genéticamente , Western Blotting , Senescencia Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Homeostasis , Proteínas Sustrato del Receptor de Insulina , Mucosa Intestinal/metabolismo , Intestinos/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Microscopía Confocal , Mutación , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...