Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38673229

RESUMEN

The work presents a tool enabling the selection of powder for 3D printing. The project focused on three types of powders, such as steel, nickel- and cobalt-based and aluminum-based. An important aspect during the research was the possibility of obtaining the mechanical parameters. During the work, the possibility of using the selected algorithm based on artificial intelligence like Random Forest, Decision Tree, K-Nearest Neighbors, Fuzzy K-Nearest Neighbors, Gradient Boosting, XGBoost, AdaBoost was also checked. During the work, tests were carried out to check which algorithm would be best for use in the decision support system being developed. Cross-validation was used, as well as hyperparameter tuning using different evaluation sets. In both cases, the best model turned out to be Random Forest, whose F1 metric score is 98.66% for cross-validation and 99.10% after tuning on the test set. This model can be considered the most promising in solving this problem. The first result is a more accurate estimate of how the model will behave for new data, while the second model talks about possible improvement after optimization or possible overtraining to the parameters.

2.
Materials (Basel) ; 16(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959434

RESUMEN

The aim of this research was to develop a solution based on existing methods and tools that would allow the automatic classification of selected images of cast iron microstructures. As part of the work, solutions based on artificial intelligence were tested and modified. Their task is to assign a specific class in the analyzed microstructure images. In the analyzed set, the examined samples appear in various zoom levels, photo sizes and colors. As is known, the components of the microstructure are different. In the examined photo, there does not have to be only one type of precipitate in each photo that indicates the correct microstructure of the same type of alloy, different shapes may appear in different amounts. This article also addresses the issue of data preparation. In order to isolate one type of structure element, the possibilities of using methods such as HOG (histogram of oriented gradients) and thresholding (the image was transformed into black objects on a white background) were checked. In order to avoid the slow preparation of training data, our solution was proposed to facilitate the labeling of data for training. The HOG algorithm combined with SVM and random forest were used for the classification process. In order to compare the effectiveness of the operation, the Faster R-CNN and Mask R-CNN algorithms were also used. The results obtained from the classifiers were compared to the microstructure assessment performed by experts.

3.
Materials (Basel) ; 16(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37109926

RESUMEN

The wear characteristics and related mechanisms of the Longwall Shearer Haulage System were investigated. Wear is one of the main reasons for failures and downtimes. This knowledge can help solve engineering problems. The research was carried out at a laboratory station and a test stand. The publication presents the results of tribological tests carried out in laboratory conditions. The aim research was to select the alloy intended for casting the toothed segments of the haulage system. The track wheel was made by the forging method using steel 20H2N4A. Haulage System was tested on the ground using a longwall shearer. Selected toothed segments were subjected to tests on this stand. The cooperation of the track wheel and toothed segments in the tootbar were analyzed by a 3D scanner. Debris chemical composition was also appointed, as well as mass loss of toothed segments. The developed solution toothed segment an increase in the service life of the track wheel in real conditions. The results of the research also contribute to reducing the operating costs of the mining process.

4.
Materials (Basel) ; 15(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36431739

RESUMEN

This paper presents an assessment of the possibility of using digital image classifiers for tomographic images concerning ductile iron castings. The results of this work can help the development of an efficient system suggestion allowing for decision making regarding the qualitative assessment of the casting process parameters. Special attention should be focused on the fact that automatic classification in the case of ductile iron castings is difficult to perform. The biggest problem in this aspect is the high similarity of the void image, which may be a sign of a defect, and the nodular graphite image. Depending on the parameters, the tests on different photos may look similar. Presented in this article are test scenarios of the module analyzing two-dimensional tomographic images focused on the comprehensive assessment by convolutional neural network models, which are designed to classify the provided image. For the purposes of the tests, three such models were created, different from each other in terms of architecture and the number of hyperparameters and trainable parameters. The described study is a part of the decision-making system, supporting the process of qualitative analysis of the obtained cast iron castings.

5.
Materials (Basel) ; 15(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454576

RESUMEN

The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA