Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37707500

RESUMEN

Exocrine cells utilize large secretory vesicles (LSVs) up to 10 µm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.


Asunto(s)
Actomiosina , Exocitosis , Vesículas Secretoras , Animales , Citoesqueleto de Actina , Membrana Celular , Proteínas del Citoesqueleto , Drosophila , Vesículas Secretoras/genética
2.
Dev Cell ; 56(11): 1603-1616.e6, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34102104

RESUMEN

Exocrine secretion commonly employs micron-scale vesicles that fuse to a limited apical surface, presenting an extreme challenge for maintaining membrane homeostasis. Using Drosophila melanogaster larval salivary glands, we show that the membranes of fused vesicles undergo actomyosin-mediated folding and retention, which prevents them from incorporating into the apical surface. In addition, the diffusion of proteins and lipids between the fused vesicle and the apical surface is limited. Actomyosin contraction and membrane crumpling are essential for recruiting clathrin-mediated endocytosis to clear the retained vesicular membrane. Finally, we also observe membrane crumpling in secretory vesicles of the mouse exocrine pancreas. We conclude that membrane sequestration by crumpling followed by targeted endocytosis of the vesicular membrane, represents a general mechanism of exocytosis that maintains membrane homeostasis in exocrine tissues that employ large secretory vesicles.


Asunto(s)
Citoesqueleto de Actina/genética , Actomiosina/genética , Exocitosis/genética , Vesículas Secretoras/genética , Animales , Transporte Biológico/genética , Membrana Celular/genética , Clatrina/genética , Drosophila melanogaster/genética , Endocitosis/genética , Glándulas Exocrinas/metabolismo , Homeostasis/genética , Fusión de Membrana/genética , Ratones , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA