Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Chem Neuroanat ; 129: 102241, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738851

RESUMEN

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Asunto(s)
Hormonas Hipotalámicas , Área Preóptica , Femenino , Ratas , Animales , Área Preóptica/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos , Hormonas Hipofisarias , Hormonas Hipotalámicas/metabolismo , Melaninas , Lactancia , Neuronas/metabolismo
2.
Peptides ; 163: 170975, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791916

RESUMEN

Melanin-concentrating hormone (MCH) is a peptide related to the reproductive function by interacting with the hypothalamus-pituitary-gonadal axis. In addition to the MCH central production, it is also found in the blood with a putative role as a neurohormone. Thereby, our focus is on steroid hormones' role in regulating centrally produced MCH in the incerto-hypothalamic area (IHy) and the peripheral MCH in the serum. For this, we investigated the effect of estradiol and/or progesterone injection on the number of MCH immunoreactive (MCH-ir) neurons at the IHy and serum levels. For further study of the role of progesterone, we analyzed the effect of blockade of progesterone receptors by its antagonist on MCH-ir neurons at the IHy and serum. To identify whether such regulation over MCH is established before sexual maturation, we assessed the effect of peripubertal removal of steroid hormones on MCH-ir neurons at the IHy and serum levels at adult age. Our results show that injecting estradiol in ovariectomized female rats reduces the number of MCH-ir neurons in the IHy, in addition to its serum levels. Blockade of progesterone receptors in intact females increases the number of MCH-ir neurons in the IHy and its serum concentration. The regulation of these hormones over the MCH peptidergic system is established before sexual maturation, once the peripubertal removal of the ovaries changes the serum levels of MCH and the number of MCH-ir neurons in the IHy of adult females. Such results support the inhibitory role of steroid hormones over the MCH system.


Asunto(s)
Hormonas Hipotalámicas , Progesterona , Femenino , Ratas , Animales , Estradiol , Receptores de Progesterona , Hormonas Hipofisarias , Hipotálamo/metabolismo , Hormonas Hipotalámicas/metabolismo , Melaninas
3.
J Chem Neuroanat ; 128: 102208, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476756

RESUMEN

The hypothalamus plays a role in reproductive cycle control, and it is a site of action of steroid hormones. Throughout the production of melanin-concentrating hormone (MCH), the hypothalamus shows adaptive changes during lactation. Therefore, in this work, we aimed to test the effects of estrogen and progesterone manipulation on MCH-immunoreactive (ir) neurons in hypothalamic brain areas related to reproductive behavior and on the MCH serum concentration. Our results show that the removal of steroid hormones by ovariectomy increases the number of MCH-ir neurons in the medial preoptic area (MPOA) and incerto-hypothalamic area (IHy) but not in the anterior part of the paraventricular nucleus of the hypothalamus (PVHa). The MCH in the serum levels also increases. In accordance, the injection of estradiol alone or estradiol and progesterone decreased the number of MCH-ir neurons in the MPOA and IHy, as well as its serum levels. The MPOA and IHy are the brain areas targeted by the steroid hormone inhibitory effect of the MCH system during lactation. This effect is also reflected in the MCH serum levels.


Asunto(s)
Hormonas Hipotalámicas , Conducta Reproductiva , Femenino , Humanos , Progesterona , Lactancia , Hormonas Hipofisarias , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas , Estrógenos , Neuronas/metabolismo , Estradiol
4.
Neurosci Lett ; 746: 135657, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33482312

RESUMEN

During puberty, sexual hormones induce crucial changes in neural circuit organization, leading to significant sexual dimorphism in adult behaviours. The ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl) is the major neural site controlling the receptive component of female sexual behaviour, which is dependent on ovarian hormones. The inputs to the VMHvl, originating from the medial nucleus of the amygdala (MeA), transmit essential information to trigger such behaviour. In this study, we investigated the projection pattern of the MeA to the VMHvl in ovariectomized rats at early puberty. Six-week-old Sprague-Dawley rats were ovariectomized (OVX) and, upon reaching 90 days of age, were subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MeA. Projections from the MeA to the VMHvl and to other structures included in the neural circuit responsible for female sexual behaviour were analysed in the Control and OVX groups. The results of the semi-quantitative analysis showed that peripubertal ovariectomy reduced the density of intra-amygdalar fibres. The stereological estimates, however, failed to find changes in the organization of the terminal fields of nerve fibres from the MeA to the VMHvl in the adult. The present data show that ovariectomized rats during the peripubertal phase did not undergo significant changes in MeA fibres reaching the VMHvl; however, they suggest a possible effect of ovariectomy on MeA connectivity under amygdalar subnuclei.


Asunto(s)
Complejo Nuclear Corticomedial/metabolismo , Red Nerviosa/metabolismo , Ovariectomía/tendencias , Maduración Sexual/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Factores de Edad , Animales , Complejo Nuclear Corticomedial/diagnóstico por imagen , Femenino , Imagenología Tridimensional/tendencias , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Ovariectomía/efectos adversos , Ratas , Ratas Sprague-Dawley , Núcleo Hipotalámico Ventromedial/diagnóstico por imagen
5.
J Anat ; 238(2): 467-479, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32914872

RESUMEN

Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.


Asunto(s)
Hormonas Esteroides Gonadales/fisiología , Área Preóptica/crecimiento & desarrollo , Núcleo Hipotalámico Ventromedial/crecimiento & desarrollo , Animales , Femenino , Fibras Nerviosas , Ovariectomía , Ratas Sprague-Dawley
6.
Front Neurosci ; 13: 1020, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607855

RESUMEN

Early growth response-1 (Egr-1), defined as a zinc finger transcription factor, is an upstream master switch of the inflammatory response, and its expression can be used to investigate the spatial and temporal extent of inflammatory changes in the brain. Cortical spreading depression (CSD) is characterized as a slowly propagating (2-5 mm/min) depolarization wave through neurons and astrocytes in humans that contributes to migraines and possibly to other brain pathologies. In rodents, CSD can be induced experimentally, which involves unilateral depolarization that is associated with microglial and astrocyte responses. The impact of CSD on structures beyond the affected hemisphere has not been explored. Here, we used an optical fractionator method to investigate potential correlations between the number of and period of the eletrophysiologic record of CSD phenomena and Egr-1 expression in ipsilateral and contralateral hemispheres. CSD was elicited by the restricted application of a 2% KCl solution over the left premotor cortex. Electrophysiological events were recorded using a pair of Ag/AgCl agar-Ringer electrodes for 2 or 6 h. An optical fractionator was applied to count the Egr-1 positive cells. We found that CSD increased Egr-1 expression in a time- and event-dependent manner in the ipsilateral/left hemisphere. Although CSD did not cross the midline, multiple CSD inductions were associated with an increased number of Egr-1 positive cells in the contralateral/right hemisphere. Thus, repeated CSD waves may have far reaching effects that are more global than previously considered possible. The mechanism of contralateral expression is unknown, but we speculate that callosal projections from the depolarized hemisphere may be related to this phenomenon.

7.
Horm Behav ; 105: 146-156, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114430

RESUMEN

Maternal melatonin provides photoperiodic information to the fetus and thus influences the regulation and timing of the offspring's internal rhythms and preparation for extra-uterine development. There is clinical evidence that melatonin deprivation of both mother and fetus during pregnancy, and of the neonate during lactation, results in negative long-term health outcomes. As a consequence, we hypothesized that the absence of maternal pineal melatonin might determine abnormal brain programming in the offspring, which would lead to long-lasting implications for behavior and brain function. To test our hypothesis, we investigated in rats the effects of maternal melatonin deprivation during gestation and lactation (MMD) to the offspring and the effects of its therapeutic replacement. The parameters evaluated were: (1) somatic, physical growth and neurobehavioral development of pups of both sexes; (2) hippocampal-dependent spatial learning and memory of the male offspring; (3) adult hippocampal neurogenesis of the male offspring. Our findings show that MMD significantly delayed male offspring's onset of fur development, pinna detachment, eyes opening, eruption of superior incisor teeth, testis descent and the time of maturation of palmar grasp, righting reflex, free-fall righting and walking. Conversely, female offspring neurodevelopment was not affected. Later on, male offspring show that MMD was able to disrupt both spatial reference and working memory in the Morris Water Maze paradigm and these deficits correlate with changes in the number of proliferative cells in the hippocampus. Importantly, all the observed impairments were reversed by maternal melatonin replacement therapy. In summary, we demonstrate that MMD delays the appearance of physical features, neurodevelopment and cognition in the male offspring, and points to putative public health implications for night shift working mothers.


Asunto(s)
Ritmo Circadiano/fisiología , Cognición/fisiología , Lactancia/fisiología , Melatonina/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal/fisiología , Femenino , Crecimiento y Desarrollo/fisiología , Masculino , Memoria/fisiología , Madres , Neurogénesis/fisiología , Fotoperiodo , Glándula Pineal/metabolismo , Glándula Pineal/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Aprendizaje Espacial/fisiología
8.
Physiol Behav ; 181: 75-79, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28867197

RESUMEN

Melanin-concentrating hormone [MCH] is an important neuromodulator related to motivated behaviors. The MCH-containing neurons are mainly located in the lateral hypothalamic area, zona incerta, and incerto-hypothalamic area. In the medial preoptic area [MPOA], a key region for the regulation of maternal behavior, Pmch mRNA expression and MCH synthesis can be detected exclusively during the lactation period. As litter size affects different parameters of maternal physiology, the aim of this study was to verify whether litter size can modulate the number of MCH-containing neurons in the MPOA of lactating rats. The dams were divided into the following groups: postpartum day 12, 15, or 19, with a large, small or reduced litter. Our results show that the number of MCH-immunoreactive neurons in the MPOA is positively correlated with the number of pups in the litter and that artificially reducing the number of pups can also decrease the number of MCH-immunoreactive neurons in the MPOA.


Asunto(s)
Hormonas Hipotalámicas/fisiología , Lactancia/fisiología , Tamaño de la Camada/fisiología , Melaninas/fisiología , Neuronas/fisiología , Hormonas Hipofisarias/fisiología , Área Preóptica/fisiología , Animales , Recuento de Células/estadística & datos numéricos , Femenino , Periodo Posparto/fisiología , Ratas
9.
Curr Opin Neurobiol ; 44: 152-158, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28527391

RESUMEN

The melanin-concentrating hormone (MCH) is an essential neuromodulator involved with homeostatic regulation and motivated behaviors. The majority of MCH neurons are localized within the zona incerta, lateral hypothalamic and incerto-hypothalamic areas but others regions, as the olfactory turbecle, the laterodorsal tegmental nucleus, the paramediam pontine reticular formation and the medial preoptic area, can also express the peptide depending on the gender and metabolic state of the animal. If the MCH on these novel sites of expression are also related with the control of wake-sleep cycle will be discuss in this review.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Sueño/fisiología , Animales , Humanos , Factores Sexuales
10.
Peptides ; 76: 130-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26804300

RESUMEN

Melanin-concentrating hormone (MCH) is a hypothalamic peptide that plays a critical role in the regulation of food intake and energy metabolism. In this study, we investigated the potential role of dense hippocampal MCH innervation in the spatially oriented food-seeking component of feeding behavior. Rats were trained for eight sessions to seek food buried in an arena using the working memory version of the food-seeking behavior (FSB) task. The testing day involved a bilateral anti-MCH injection into the hippocampal formation followed by two trials. The anti-MCH injection did not interfere with the performance during the first trial on the testing day, which was similar to the training trials. However, during the second testing trial, when no food was presented in the arena, the control subjects exhibited a dramatic increase in the latency to initiate digging. Treatment with an anti-MCH antibody did not interfere with either the food-seeking behavior or the spatial orientation of the subjects, but the increase in the latency to start digging observed in the control subjects was prevented. These results are discussed in terms of a potential MCH-mediated hippocampal role in the integration of the sensory information necessary for decision-making in the pre-ingestive component of feeding behavior.


Asunto(s)
Conducta Alimentaria , Hipocampo/metabolismo , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Toma de Decisiones , Ingestión de Alimentos/efectos de los fármacos , Conducta Exploratoria , Hipocampo/efectos de los fármacos , Hormonas Hipotalámicas/antagonistas & inhibidores , Hormonas Hipotalámicas/inmunología , Sueros Inmunes/farmacología , Masculino , Melaninas/antagonistas & inhibidores , Melaninas/inmunología , Hormonas Hipofisarias/antagonistas & inhibidores , Hormonas Hipofisarias/inmunología , Ratas Wistar
11.
Brain Res ; 1582: 77-90, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25084037

RESUMEN

The ventral premammillary nucleus (PMV) expresses dense collections of sex steroid receptors and receptors for metabolic cues, including leptin, insulin and ghrelin. The PMV responds to opposite sex odor stimulation and projects to areas involved in reproductive control, including direct innervation of gonadotropin releasing hormone neurons. Thus, the PMV is well positioned to integrate metabolic and reproductive cues, and control downstream targets that mediate reproductive function. In fact, lesions of PMV neurons blunt female reproductive function and maternal aggression. However, although the projections of PMV neurons have been well documented, little is known about the neuronal inputs received by PMV neurons. To fill this gap, we performed a systematic evaluation of the brain sites innervating the PMV neurons of male and female rats using the retrograde tracer subunit B of the cholera toxin (CTb). In general, we observed that males and females show a similar pattern of afferents. We also noticed that the PMV is preferentially innervated by neurons located in the forebrain, with very few projections coming from brainstem nuclei. The majority of inputs originated from the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic nucleus. A moderate to high density of afferents was also observed in the ventral subiculum, the arcuate nucleus and the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus. Our findings strengthen the concept that the PMV is part of the vomeronasal system and integrates the brain circuitry controlling reproductive functions.


Asunto(s)
Hipotálamo Posterior/anatomía & histología , Neuronas/citología , Caracteres Sexuales , Animales , Encéfalo/anatomía & histología , Toxina del Cólera , Femenino , Inmunohistoquímica , Masculino , Vías Nerviosas/anatomía & histología , Técnicas de Trazados de Vías Neuroanatómicas , Fotomicrografía , Ratas Wistar
12.
Cell Tissue Res ; 353(3): 367-80, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23644765

RESUMEN

The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.


Asunto(s)
Mesenterio , Neuronas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Deficiencia de Proteína/metabolismo , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Femenino , Masculino , Mesenterio/crecimiento & desarrollo , Mesenterio/inervación , Mesenterio/metabolismo , Mesenterio/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Óxido Nítrico Sintasa/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Deficiencia de Proteína/patología , Ratas , Ratas Wistar , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X7/metabolismo
13.
Behav Brain Res ; 226(1): 32-40, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21903137

RESUMEN

Previous studies using morphine-treated dams reported a role for the rostral lateral periaqueductal gray (rlPAG) in the behavioral switching between nursing and insect hunting, likely to depend on an enhanced seeking response to the presence of an appetitive rewarding cue (i.e., the roach). To elucidate the neural mechanisms mediating such responses, in the present study, we first observed how the rlPAG influences predatory hunting in male rats. Our behavioral observations indicated that bilateral rlPAG NMDA lesions dramatically interfere with prey hunting, leaving the animal without chasing or attacking the prey, but do not seem to affect the general levels of arousal, locomotor activity and regular feeding. Next, using Phaseolus vulgaris-leucoagglutinin (PHA-L), we have reviewed the rlPAG connection pattern, and pointed out a particularly dense projection to the hypothalamic orexinergic cell group. Double labeled PHA-L and orexin sections showed an extensive overlap between PHA-L labeled fibers and orexin cells, revealing that both the medial/perifornical and lateral hypothalamic orexinergic cell groups receive a substantial innervation from the rlPAG. We have further observed that both the medial/perifornical and lateral hypothalamic orexinergic cell groups up-regulate Fos expression during prey hunting, and that rlPAG lesions blunted this Fos increase only in the lateral hypothalamic, but not in the medial/perifornical, orexinergic group, a finding supposedly associated with the lack of motivational drive to actively pursue the prey. Overall, the present results suggest that the rlPAG should exert a critical influence on reward seeking by activating the lateral hypothalamic orexinergic cell group.


Asunto(s)
Sustancia Gris Periacueductal/metabolismo , Conducta Predatoria/fisiología , Recompensa , Animales , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Actividad Motora/fisiología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Sustancia Gris Periacueductal/efectos de los fármacos , Conducta Predatoria/efectos de los fármacos , Ratas , Ratas Wistar
14.
Brain Res ; 1425: 47-61, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-22030409

RESUMEN

Cocaine- and amphetamine-regulated transcript (CART) is widely distributed in the brain of many species. In the hypothalamus, CART neurotransmission has been implicated in diverse functions including energy balance, stress response, and temperature and endocrine regulation. Although some studies have been performed in primates, very little is known about the distribution of CART neurons in New World monkeys. New World monkeys are good models for systems neuroscience, as some species have evolved several behavioral and anatomical characteristics shared with humans, including diurnal and social habits, intense maternal care, complex manipulative abilities and well-developed frontal cortices. In the present study, we assessed the distribution of CART mRNA and peptide in the hypothalamus of the capuchin monkey (Cebus apella) and the common marmoset (Callithrix jacchus). We found that the distribution of hypothalamic CART neurons in these monkeys is similar to what has been described for rodents and humans, but some relevant differences were noticed. Only in capuchin monkeys CART neurons were observed in the suprachiasmatic and the intercalatus nuclei, whereas only in marmoset CART neurons were observed in the dorsal anterior nucleus. We also found that the only in marmoset displayed CART neurons in the periventricular preoptic nucleus and in an area seemingly comprising the premammillary nucleus. These hypothalamic sites are both well defined in rodents but poorly defined in humans. Our findings indicate that CART expression in hypothalamic neurons is conserved across species but the identified differences suggest that CART is also involved in the control of species-specific related functions.


Asunto(s)
Callithrix/metabolismo , Cebus/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Hipotálamo/química , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Especificidad de la Especie
15.
Brain Res ; 1367: 114-21, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20974111

RESUMEN

The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1⁻/⁻ mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs.


Asunto(s)
Regulación hacia Abajo/genética , Epilepsia Refleja/patología , Hipocampo/metabolismo , Excitación Neurológica/genética , ARN Citoplasmático Pequeño/genética , ARN no Traducido/genética , Estimulación Acústica/efectos adversos , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Refleja/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Citoplasmático Pequeño/metabolismo , Ratas , Ratas Wistar
16.
Physiol Behav ; 99(1): 67-77, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-19857504

RESUMEN

Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide urocortin 3, or glutamic acid decarboxylase mRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir in the MEA and PMV comparing fed and fasted animals. In the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 mRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine- and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues.


Asunto(s)
Amígdala del Cerebelo/citología , Hipotálamo Posterior/citología , Neuronas/fisiología , Odorantes , Proteínas Oncogénicas v-fos/metabolismo , Caracteres Sexuales , Animales , Ayuno/fisiología , Femenino , Regulación de la Expresión Génica/fisiología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hipotálamo Posterior/anomalías , Masculino , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Vías Olfatorias/metabolismo , ARN Mensajero/metabolismo , Ratas , Urocortinas/genética , Urocortinas/metabolismo
17.
Hippocampus ; 20(1): 125-33, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19330849

RESUMEN

The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naïve WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures.


Asunto(s)
Hipocampo/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Estimulación Acústica , Animales , Región CA1 Hipocampal/metabolismo , Enfermedad Crónica , Epilepsia/genética , Epilepsia/metabolismo , Femenino , Colículos Inferiores/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas , Ratas Wistar , Especificidad de la Especie , Colículos Superiores/metabolismo
18.
J Chem Neuroanat ; 39(1): 51-62, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19913090

RESUMEN

Lactation is an energy-demanding process characterized by massive food and water consumption, cessation of the reproductive cycle and induction of maternal behavior. During lactation, melanin-concentrating hormone (MCH) mRNA and peptide expression are increased in the medial preoptic area (MPO) and in the anterior paraventricular nucleus of the hypothalamus. Here we show that MCH neurons in the MPO coexpress the GABA synthesizing enzyme GAD-67 mRNA. We also show that MCH neurons in the MPO of female rats are innervated by neuropeptides that control energy homeostasis including agouti-related protein (AgRP), alpha-melanocyte stimulating hormone (alphaMSH) and cocaine- and amphetamine-regulated transcript (CART). Most of these inputs originate from the arcuate nucleus neurons. Additionally, using injections of retrograde tracers we found that CART neurons in the ventral premammillary nucleus also innervate the MPO. We then assessed the projections of the female MPO using injections of anterograde tracers. The MPO densely innervates hypothalamic nuclei related to reproductive control including the anteroventral periventricular nucleus, the ventrolateral subdivision of the ventromedial nucleus (VMHvl) and the ventral premammillary nucleus (PMV). We found that the density of MCH-ir fibers is increased in the VMHvl and PMV during lactation. Our findings suggest that the expression of MCH in the MPO may be induced by changing levels of neuropeptides involved in metabolic control. These MCH/GABA neurons may, in turn, participate in the suppression of cyclic reproductive function and/or sexual behavior during lactation through projections to reproductive control sites.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Área Preóptica/metabolismo , Animales , Femenino , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Lactancia , Neuronas/química , Área Preóptica/química , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley
19.
Brain Res Bull ; 74(1-3): 21-8, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17683785

RESUMEN

Melanin-concentrating hormone (MCH) is a neuropeptide originating from prepro-MCH. In male rats, neurons expressing MCH are found in the lateral hypothalamic area and medial zona incerta, as well as, sparsely, in the olfactory tubercle and pontine reticular formation. The wide distribution of MCH fibers suggests the involvement of this neuropeptide in a variety of functions, including arousal, neuroendocrine control and energy homeostasis. In lactating females, MCH is expressed in the preoptic area, indicating sexual dimorphism in MCH gene activation according to the female reproductive state. We hypothesized that MCH is also expressed differentially in the brainstem of female rats. Adult male rats and female rats (in the afternoon of diestrus and proestrus days; ovariectomized; or on lactation days 5, 12 and 19) were perfused between 2 and 4 p.m., and the brainstems were processed for in situ hybridization using a 35S-labeled prepro-MCH riboprobe. As described in males, prepro-MCH was expressed in the pontine reticular formation of females. We also observed consistent prepro-MCH expression in the caudal laterodorsal tegmental nucleus (LDT) of females but no differential expression comparing the various female reproductive states. Using dual-label immunohistochemistry or dual-label in situ hybridization, we found that brainstem MCH neurons coexpress glutamic acid decarboxylase mRNA, the gamma aminobutyric acid (GABA) processing enzyme, but do not colocalize choline acetyl transferase (acetylcholine processing enzyme). Since changes in LDT GABAergic cell activity are associated with rapid eye movement (REM) sleep, our findings suggest that MCH interacts with LDT GABAergic neurons and plays a role in REM sleep regulation.


Asunto(s)
Expresión Génica/fisiología , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Hormonas Hipofisarias/metabolismo , Caracteres Sexuales , Animales , Diestro/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hormonas Hipotalámicas/genética , Hibridación in Situ/métodos , Lactatos/metabolismo , Masculino , Melaninas/genética , Ovariectomía/métodos , Hormonas Hipofisarias/genética , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
Brain Res ; 1089(1): 116-25, 2006 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-16638605

RESUMEN

Urocortin 3 (Ucn 3) is a recently described peptide of the corticotropin-releasing factor family. Neurons expressing Ucn 3 mRNA and peptide are distributed in specific brain areas, including the median preoptic nucleus, the perifornical area (PFx), and the medial nucleus of the amygdala (MEA). Fibers immunoreactive to Ucn 3 are confined to certain brain nuclei, being particularly dense in the ventral premammillary nucleus (PMV). In studies involving electrolytic lesions and analysis of Fos distribution according to behavioral paradigms, the PMV has been potentially implicated in conspecific aggression and sexual behavior. However, the role that Ucn 3 plays in this pathway has not been explored. Therefore, we investigated the origins of the urocortinergic innervation of the PMV of Wistar rat in an attempt to map the brain circuitry and identify likely related functions. We injected the retrograde tracer cholera toxin b subunit into the PMV and found that 88% of the Ucn 3-immunoreactive fibers in the PMV originate in the dorsal MEA, and that few originate in the PFx. As a control, we injected the anterograde tracer biotin dextran amine into both regions. We observed that the PMV is densely innervated by the MEA, and scarcely innervated by the PFx. The MEA is a secondary relay of the vomeronasal system and projects amply to hypothalamic nuclei related to hormonal and behavioral adjustments, including the PMV. Although physiological studies should also be performed, we hypothesize that Ucn 3 participates in such pathways, conveying sensory information to the PMV, which in turn modulates behavioral and neuroendocrine responses.


Asunto(s)
Vías Aferentes/metabolismo , Amígdala del Cerebelo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Tubérculos Mamilares/metabolismo , Neuronas/metabolismo , Vías Aferentes/citología , Amígdala del Cerebelo/citología , Animales , Axones/metabolismo , Axones/ultraestructura , Biotina/análogos & derivados , Mapeo Encefálico , Toxina del Cólera , Dextranos , Hipotálamo/citología , Inmunohistoquímica , Masculino , Tubérculos Mamilares/citología , Ratas , Ratas Wistar , Urocortinas , Órgano Vomeronasal/citología , Órgano Vomeronasal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...