Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Microbiol Spectr ; : e0316823, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722177

RESUMEN

Vitamin B12 (B12) serves as a critical cofactor within mycobacterial metabolism. While some pathogenic strains can synthesize B12 de novo, others rely on host-acquired B12. In this investigation, we studied the transport of vitamin B12 in Mycobacterium marinum using B12-auxotrophic and B12-sensitive strains by deleting metH or metE, respectively. These two enzymes rely on B12 in different ways to function as methionine synthases. We used these strains to select mutants affecting B12 scavenging and confirmed their phenotypes during growth experiments in vitro. Our analysis of B12 uptake mechanisms revealed that membrane lipids and cell wall integrity play an essential role in cell envelope transport. Furthermore, we identified a potential transcription regulator that responds to B12. Our study demonstrates that M. marinum can take up exogenous B12 and that altering mycobacterial membrane integrity affects B12 uptake. Finally, during zebrafish infection using B12-auxotrophic and B12-sensitive strains, we found that B12 is available for virulent mycobacteria in vivo.IMPORTANCEOur study investigates how mycobacteria acquire essential vitamin B12. These microbes, including those causing tuberculosis, face challenges in nutrient uptake due to their strong outer layer. We focused on Mycobacterium marinum, similar to TB bacteria, to uncover its vitamin B12 absorption. We used modified strains unable to produce their own B12 and discovered that M. marinum can indeed absorb it from the environment, even during infections. Changes in the outer layer composition affect this process, and genes related to membrane integrity play key roles. These findings illuminate the interaction between mycobacteria and their environment, offering insights into combatting diseases like tuberculosis through innovative strategies. Our concise research underscores the pivotal role of vitamin B12 in microbial survival and its potential applications in disease control.

2.
Life Sci Alliance ; 7(7)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38744470

RESUMEN

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Asunto(s)
Benzotiazoles , Sinergismo Farmacológico , Mycobacterium marinum , Pez Cebra , Animales , Benzotiazoles/farmacología , Mycobacterium marinum/efectos de los fármacos , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Rifampin/farmacología
3.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38684467

RESUMEN

The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Embrión no Mamífero , Pez Cebra , Pez Cebra/embriología , Animales , Descubrimiento de Drogas/métodos , Embrión no Mamífero/efectos de los fármacos , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Antiinfecciosos/farmacología
4.
Sci Rep ; 13(1): 15406, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717068

RESUMEN

The ß-lactamase of Mycobacterium tuberculosis, BlaC, hydrolyzes ß-lactam antibiotics, hindering the use of these antibiotics for the treatment of tuberculosis. Inhibitors, such as avibactam, can reversibly inhibit the enzyme, allowing for the development of combination therapies using both antibiotic and inhibitor. However, laboratory evolution studies using Escherichia coli resulted in the discovery of single amino acid variants of BlaC that reduce the sensitivity for inhibitors or show higher catalytic efficiency against antibiotics. Here, we tested these BlaC variants under more physiological conditions using the M. marinum infection model of zebrafish, which recapitulates hallmark features of tuberculosis, including the intracellular persistence of mycobacteria in macrophages and the induction of granuloma formation. To this end, the M. tuberculosis blaC gene was integrated into the chromosome of a blaC frameshift mutant of M. marinum. Subsequently, the resulting strains were used to infect zebrafish embryos in order to test the combinatorial effect of ampicillin and avibactam. The results show that embryos infected with an M. marinum strain producing BlaC show lower infection levels after treatment than untreated embryos. Additionally, BlaC K234R showed higher infection levels after treatment than those infected with bacteria producing the wild-type enzyme, demonstrating that the zebrafish host is less sensitive to the combinatorial therapy of ß-lactam antibiotic and inhibitor. These findings are of interest for future development of combination therapies to treat tuberculosis.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/genética , Pez Cebra , Mycobacterium marinum/genética , beta-Lactamasas/genética , Tuberculosis/tratamiento farmacológico , Ampicilina , Antibacterianos , Escherichia coli/genética
5.
iScience ; 26(7): 107216, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534181

RESUMEN

Cell-surface signaling (CSS) is a signal transfer system of Gram-negative bacteria that produces the activation of an extracytoplasmic function σ factor (σECF) in the cytosol in response to an extracellular signal. Activation requires the regulated and sequential proteolysis of the σECF-associated anti-σ factor, and the function of the Prc and RseP proteases. In this work, we have identified another protease that modulates CSS activity, namely the periplasmic carboxyl-terminal processing protease CtpA. CtpA functions upstream of Prc in the proteolytic cascade and seems to prevent the Prc-mediated proteolysis of the CSS anti-σ factor. Importantly, using zebrafish embryos and the A549 lung epithelial cell line as hosts, we show that mutants in the rseP and ctpA proteases of the human pathogen Pseudomonas aeruginosa are considerably attenuated in virulence while the prc mutation increases virulence likely by enhancing the production of membrane vesicles.

6.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37072345

RESUMEN

BACKGROUND: Interferon (IFN)-ß induction via activation of the stimulator of interferon genes (STING) pathway has shown promising results in tumor models. STING is activated by cyclic dinucleotides such as cyclic GMP-AMP dinucleotides with phosphodiester linkages 2'-5' and 3'-5' (cGAMPs), that are produced by cyclic GMP-AMP synthetase (cGAS). However, delivery of STING pathway agonists to the tumor site is a challenge. Bacterial vaccine strains have the ability to specifically colonize hypoxic tumor tissues and could therefore be modified to overcome this challenge. Combining high STING-mediated IFN-ß levels with the immunostimulatory properties of Salmonella typhimurium could have potential to overcome the immune suppressive tumor microenvironment. METHODS: We have engineered S. typhimurium to produce cGAMP by expression of cGAS. The ability of cGAMP to induce IFN-ß and its IFN-stimulating genes was addressed in infection assays of THP-I macrophages and human primary dendritic cells (DCs). Expression of catalytically inactive cGAS is used as a control. DC maturation and cytotoxic T-cell cytokine and cytotoxicity assays were conducted to assess the potential antitumor response in vitro. Finally, by making use of different S. typhimurium type III secretion (T3S) mutants, the mode of cGAMP transport was elucidated. RESULTS: Expression of cGAS in S. typhimurium results in a 87-fold stronger IFN-ß response in THP-I macrophages. This effect was mediated by cGAMP production and is STING dependent. Interestingly, the needle-like structure of the T3S system was necessary for IFN-ß induction in epithelial cells. DC activation included upregulation of maturation markers and induction of type I IFN response. Coculture of challenged DCs with cytotoxic T cells revealed an improved cGAMP-mediated IFN-γ response. In addition, coculture of cytotoxic T cells with challenged DCs led to improved immune-mediated tumor B-cell killing. CONCLUSION: S. typhimurium can be engineered to produce cGAMPs that activate the STING pathway in vitro. Furthermore, they enhanced the cytotoxic T-cell response by improving IFN-γ release and tumor cell killing. Thus, the immune response triggered by S. typhimurium can be enhanced by ectopic cGAS expression. These data show the potential of S. typhimurium-cGAS in vitro and provides rationale for further research in vivo.


Asunto(s)
Interferón Tipo I , Neoplasias , Humanos , Salmonella typhimurium/metabolismo , Expresión Génica Ectópica , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Células Dendríticas/metabolismo , Microambiente Tumoral
7.
Biomolecules ; 13(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36830581

RESUMEN

The ESX-5 secretion system is essential for the viability and virulence of slow-growing pathogenic mycobacterial species. In this study, we identified a 1,2,4-oxadiazole derivative as a putative effector of the ESX-5 secretion system. We confirmed that this 1,2,4-oxadiazole and several newly synthesized derivatives inhibited the ESX-5-dependent secretion of active lipase LipY by Mycobacterium marinum (M. marinum). Despite reduced lipase activity, we did not observe a defect in LipY secretion itself. Moreover, we found that several other ESX-5 substrates, especially the high molecular-weight PE_PGRS MMAR_5294, were even more abundantly secreted by M. marinum treated with several 1,2,4-oxadiazoles. Analysis of M. marinum grown in the presence of different oxadiazole derivatives revealed that the secretion of LipY and the induction of PE_PGRS secretion were, in fact, two independent phenotypes, as we were able to identify structural features in the compounds that specifically induced only one of these phenotypes. Whereas the three most potent 1,2,4-oxadiazoles displayed only a mild effect on the growth of M. marinum or M. tuberculosis in culture, these compounds significantly reduced bacterial burden in M. marinum-infected zebrafish models. In conclusion, we report a 1,2,4-oxadiazole scaffold that dysregulates ESX-5 protein secretion.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Animales , Proteínas Bacterianas/metabolismo , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Pez Cebra/metabolismo , Virulencia , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Lipasa/metabolismo
8.
Cell Rep ; 41(12): 111851, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543127

RESUMEN

Pneumolysin is a major virulence factor of Streptococcus pneumoniae that plays a key role in interaction with the host during invasive disease. How pneumolysin influences these dynamics between host and pathogen interaction during early phase of central nervous system infection in pneumococcal meningitis remains unclear. Using a whole-animal in vivo dual RNA sequencing (RNA-seq) approach, we identify pneumolysin-specific transcriptional responses in both S. pneumoniae and zebrafish (Danio rerio) during early pneumococcal meningitis. By functional enrichment analysis, we identify host pathways known to be activated by pneumolysin and discover the importance of necroptosis for host survival. Inhibition of this pathway using the drug GSK'872 increases host mortality during pneumococcal meningitis. On the pathogen's side, we show that pneumolysin-dependent competence activation is crucial for intra-host replication and virulence. Altogether, this study provides new insights into pneumolysin-specific transcriptional responses and identifies key pathways involved in pneumococcal meningitis.


Asunto(s)
Meningitis Neumocócica , Animales , Meningitis Neumocócica/genética , Meningitis Neumocócica/metabolismo , Meningitis Neumocócica/microbiología , Pez Cebra/metabolismo , Necroptosis , RNA-Seq , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
mBio ; 13(6): e0281922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409073

RESUMEN

Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Animales , Humanos , Mycobacterium marinum/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulencia , Factores de Virulencia/metabolismo , Sistemas de Secreción Tipo VII/metabolismo
10.
Nat Microbiol ; 7(12): 2089-2100, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36329197

RESUMEN

So far, only members of the bacterial phyla Proteobacteria and Verrucomicrobia are known to grow methanotrophically under aerobic conditions. Here we report that this metabolic trait is also observed within the Actinobacteria. We enriched and cultivated a methanotrophic Mycobacterium from an extremely acidic biofilm growing on a cave wall at a gaseous chemocline interface between volcanic gases and the Earth's atmosphere. This Mycobacterium, for which we propose the name Candidatus Mycobacterium methanotrophicum, is closely related to well-known obligate pathogens such as M. tuberculosis and M. leprae. Genomic and proteomic analyses revealed that Candidatus M. methanotrophicum expresses a full suite of enzymes required for aerobic growth on methane, including a soluble methane monooxygenase that catalyses the hydroxylation of methane to methanol and enzymes involved in formaldehyde fixation via the ribulose monophosphate pathway. Growth experiments combined with stable isotope probing using 13C-labelled methane confirmed that Candidatus M. methanotrophicum can grow on methane as a sole carbon and energy source. A broader survey based on 16S metabarcoding suggests that species closely related to Candidatus M. methanotrophicum may be abundant in low-pH, high-methane environments.


Asunto(s)
Ecosistema , Mycobacterium , Proteómica , Filogenia , Metano/metabolismo , Mycobacterium/genética
11.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35203875

RESUMEN

The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity.

12.
Dis Model Mech ; 14(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643222

RESUMEN

Finding new anti-tuberculosis compounds with convincing in vivo activity is an ongoing global challenge to fight the emergence of multidrug-resistant Mycobacterium tuberculosis isolates. In this study, we exploited the medium-throughput capabilities of the zebrafish embryo infection model with Mycobacterium marinum as a surrogate for M. tuberculosis. Using a representative set of clinically established drugs, we demonstrate that this model could be predictive and selective for antibiotics that can be administered orally. We further used the zebrafish infection model to screen 240 compounds from an anti-tuberculosis hit library for their in vivo activity and identified 14 highly active compounds. One of the most active compounds was the tetracyclic compound TBA161, which was studied in more detail. Analysis of resistant mutants revealed point mutations in aspS (rv2572c), encoding an aspartyl-tRNA synthetase. The target was genetically confirmed, and molecular docking studies propose the possible binding of TBA161 in a pocket adjacent to the catalytic site. This study shows that the zebrafish infection model is suitable for rapidly identifying promising scaffolds with in vivo activity.


Asunto(s)
Aspartato-ARNt Ligasa , Mycobacterium tuberculosis , Tuberculosis , Animales , Simulación del Acoplamiento Molecular , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pez Cebra
13.
Front Immunol ; 12: 702359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276695

RESUMEN

It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.


Asunto(s)
Antígenos Bacterianos/inmunología , Macrófagos/inmunología , FN-kappa B/inmunología , Tuberculosis/inmunología , Factores de Virulencia/inmunología , Humanos , Inflamación/inmunología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal/inmunología , Células THP-1 , Virulencia/inmunología
14.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952660

RESUMEN

Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.


Asunto(s)
Citosol/microbiología , Mycobacterium/inmunología , Mycobacterium/patogenicidad , Fagosomas/microbiología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Armadillos/microbiología , Traslocación Bacteriana , Citosol/inmunología , Femenino , Humanos , Lepra/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mycobacterium/clasificación , Fagosomas/inmunología , Piel/microbiología , Piel/patología , Células THP-1 , Pez Cebra
15.
Nature ; 593(7859): 445-448, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981042

RESUMEN

Mycobacterium tuberculosis is the cause of one of the most important infectious diseases in humans, which leads to 1.4 million deaths every year1. Specialized protein transport systems-known as type VII secretion systems (T7SSs)-are central to the virulence of this pathogen, and are also crucial for nutrient and metabolite transport across the mycobacterial cell envelope2,3. Here we present the structure of an intact T7SS inner-membrane complex of M. tuberculosis. We show how the 2.32-MDa ESX-5 assembly, which contains 165 transmembrane helices, is restructured and stabilized as a trimer of dimers by the MycP5 protease. A trimer of MycP5 caps a central periplasmic dome-like chamber that is formed by three EccB5 dimers, with the proteolytic sites of MycP5 facing towards the cavity. This chamber suggests a central secretion and processing conduit. Complexes without MycP5 show disruption of the EccB5 periplasmic assembly and increased flexibility, which highlights the importance of MycP5 for complex integrity. Beneath the EccB5-MycP5 chamber, dimers of the EccC5 ATPase assemble into three bundles of four transmembrane helices each, which together seal the potential central secretion channel. Individual cytoplasmic EccC5 domains adopt two distinctive conformations that probably reflect different secretion states. Our work suggests a previously undescribed mechanism of protein transport and provides a structural scaffold to aid in the development of drugs against this major human pathogen.


Asunto(s)
Microscopía por Crioelectrón , Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII/metabolismo , Sistemas de Secreción Tipo VII/ultraestructura , Citosol/química , Citosol/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/ultraestructura , Periplasma/química , Periplasma/metabolismo , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Tuberculosis/virología , Sistemas de Secreción Tipo VII/química
16.
Commun Biol ; 4(1): 306, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686188

RESUMEN

Transmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Microscopía Electrónica de Transmisión , Tetraciclina/farmacología , Adhesión del Tejido , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas de la Membrana/metabolismo , Microtomía
17.
Artículo en Inglés | MEDLINE | ID: mdl-33495223

RESUMEN

Screening strategies for antituberculosis compounds using Mycobacterium tuberculosis are time consuming and require biosafety level 3 (BSL3) facilities, which makes the development of high-throughput assays difficult and expensive. Mycobacterium marinum, a close genetic relative of M. tuberculosis, possesses several advantages as a suitable model for tuberculosis drug screening. However, despite the high genetic similarity, there are some obvious differences in susceptibility to some tuberculosis drugs between these two species, especially for the prodrugs ethionamide and isoniazid. In this study, we aimed to improve M. marinum as a model for antituberculosis drug identification by heterologous expression of two common drug activators, EthA and KatG. These two activators were overexpressed in M. marinum, and the strains were tested against ethionamide, isoniazid, and a library of established antimycobacterial compounds from TB Alliance to compare drug susceptibility. Both in vitro and in vivo using zebrafish larvae, these genetically modified M. marinum strains showed significantly higher susceptibility against ethionamide and isoniazid, which require activation by EthA and KatG. More importantly, a strain overexpressing both ethA and katG was potentially more susceptible to approximately 20% of the antituberculosis hit compounds from the TB Alliance library. Most of these compounds were activated by EthA in M. marinum Four of these compounds were selected for further analysis, and three of them showed obvious EthA-dependent activity against M. tuberculosis Overall, our developed M. marinum strains are valuable tools for high-throughput discovery of potential novel antituberculosis prodrugs.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Profármacos , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Isoniazida/farmacología , Mutación , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Profármacos/farmacología , Pez Cebra
18.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32778551

RESUMEN

Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinumIn vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.


Asunto(s)
Mycobacterium , Preparaciones Farmacéuticas , Tuberculosis , Animales , Etambutol , Tuberculosis/tratamiento farmacológico , Pez Cebra
19.
Tuberculosis (Edinb) ; 124: 101983, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32829077

RESUMEN

The ability to genetically engineer pathogenic mycobacteria has increased significantly over the last decades due to the generation of new molecular tools. Recently, the application of the Streptococcus pyogenes and the Streptococcus thermophilus CRISPR-Cas9 systems in mycobacteria has enabled gene editing and efficient CRISPR interference-mediated transcriptional regulation. Here, we converted CRISPR interference into an efficient genome editing tool for mycobacteria. We demonstrate that the Streptococcus thermophilus CRISPR1-Cas9 (Sth1Cas9) is functional in Mycobacterium marinum and Mycobacterium tuberculosis, enabling highly efficient and precise DNA breaks and indel formation, without any off-target effects. In addition, with dual sgRNAs this system can be used to generate two indels simultaneously or to create specific deletions. The ability to use the power of the CRISPR-Cas9-mediated gene editing toolbox in M. tuberculosis with a single step will accelerate research into this deadly pathogen.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Streptococcus thermophilus/genética , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR/metabolismo , Catalasa/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Mutación INDEL , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , ARN Guía de Kinetoplastida/genética , Streptococcus thermophilus/enzimología
20.
Bioinformatics ; 36(19): 4965-4967, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-32638008

RESUMEN

SUMMARY: Proteomics is a powerful tool for protein expression analysis and is becoming more readily available to researchers through core facilities or specialized collaborations. However, one major bottleneck for routine implementation and accessibility of this technology to the wider scientific community is the complexity of data analysis. To this end, we have created ProVision, a free open-source web-based analytics platform that allows users to analyze data from two common proteomics relative quantification workflows, namely label-free and tandem mass tag-based experiments. Furthermore, ProVision allows the freedom to interface with the data analysis pipeline while maintaining a user-friendly environment and providing default parameters for fast statistical and exploratory data analysis. Finally, multiple customizable quality control, differential expression plots as well as enrichments and protein-protein interaction prediction can be generated online in one platform. AVAILABILITY AND IMPLEMENTATION: Quick start and step-by-step tutorials as well as tutorial data are fully incorporated in the web application. This application is available online at https://provision.shinyapps.io/provision/ for free use. The source code is available at https://github.com/JamesGallant/ProVision under the GPL version 3.0 license.


Asunto(s)
Proteómica , Programas Informáticos , Análisis de Datos , Internet , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...