Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 55(12): 2160-2174, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049665

RESUMEN

Whole-genome sequencing of longitudinal tumor pairs representing transformation of follicular lymphoma to high-grade B cell lymphoma with MYC and BCL2 rearrangements (double-hit lymphoma) identified coding and noncoding genomic alterations acquired during lymphoma progression. Many of these transformation-associated alterations recurrently and focally occur at topologically associating domain resident regulatory DNA elements, including H3K4me3 promoter marks located within H3K27ac super-enhancer clusters in B cell non-Hodgkin lymphoma. One region found to undergo recurrent alteration upon transformation overlaps a super-enhancer affecting the expression of the PAX5/ZCCHC7 gene pair. ZCCHC7 encodes a subunit of the Trf4/5-Air1/2-Mtr4 polyadenylation-like complex and demonstrated copy number gain, chromosomal translocation and enhancer retargeting-mediated transcriptional upregulation upon lymphoma transformation. Consequently, lymphoma cells demonstrate nucleolar dysregulation via altered noncoding 5.8S ribosomal RNA processing. We find that a noncoding mutation acquired during lymphoma progression affects noncoding rRNA processing, thereby rewiring protein synthesis leading to oncogenic changes in the lymphoma proteome.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Mutación , Linfoma de Células B/genética , Linfoma de Células B/patología , Translocación Genética/genética , Linfoma/genética , Secuencias Reguladoras de Ácidos Nucleicos
2.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301768

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Fosforilación , ARN Nuclear Pequeño/química , Ribonucleoproteínas/metabolismo , Empalmosomas/genética , Tratamiento Farmacológico de COVID-19
3.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33948588

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB) specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at some 80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.

4.
Nat Genet ; 53(2): 230-242, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526923

RESUMEN

Noncoding RNAs are exquisitely titrated by the cellular RNA surveillance machinery for regulating diverse biological processes. The RNA exosome, the predominant 3' RNA exoribonuclease in mammalian cells, is composed of nine core and two catalytic subunits. Here, we developed a mouse model with a conditional allele to study the RNA exosome catalytic subunit DIS3. In DIS3-deficient B cells, integrity of the immunoglobulin heavy chain (Igh) locus in its topologically associating domain is affected, with accumulation of DNA-associated RNAs flanking CTCF-binding elements, decreased CTCF binding to CTCF-binding elements and disorganized cohesin localization. DIS3-deficient B cells also accumulate activation-induced cytidine deaminase-mediated asymmetric nicks, altering somatic hypermutation patterns and increasing microhomology-mediated end-joining DNA repair. Altered mutation patterns and Igh architectural defects in DIS3-deficient B cells lead to decreased class-switch recombination but increased chromosomal translocations. Our observations of DIS3-mediated architectural regulation at the Igh locus are reflected genome wide, thus providing evidence that noncoding RNA processing is an important mechanism for controlling genome organization.


Asunto(s)
Linfocitos B/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , ARN no Traducido/genética , Hipermutación Somática de Inmunoglobulina/fisiología , Animales , Linfocitos B/efectos de los fármacos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Proteínas Fluorescentes Verdes/genética , Ratones Noqueados , Ratones Transgénicos , Mutación , Procesamiento Postranscripcional del ARN , Recombinación Genética , Tamoxifeno/farmacología , Cohesinas
5.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367824

RESUMEN

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/biosíntesis , Adenosina Trifosfato/metabolismo , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Dominios Proteicos , Mapeo de Interacción de Proteínas , Proteómica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Biol Cell ; 30(26): 3136-3150, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31664887

RESUMEN

Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA--protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.


Asunto(s)
Cuerpos Enrollados/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Telómero/fisiología , Línea Celular Tumoral , Disqueratosis Congénita/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Telomerasa/genética
7.
Mol Genet Genomic Med ; 5(6): 805-808, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29178645

RESUMEN

BACKGROUND: The inherited bone marrow failure syndrome dyskeratosis congenita (DC) is most frequently caused by mutations in DKC1 (MIM# 300126), the gene encoding NAP57 (aka dyskerin). The typically missense mutations modulate the interaction of NAP57 with its chaperone SHQ1, but no DC mutations have been identified in SHQ1 (MIM# 613663). Here, we report on two compound heterozygous mutations in SHQ1 in a patient with a severe neurological disorder including cerebellar degeneration. METHODS: The SHQ1 mutations were identified by patient exome sequencing. The impact of the mutations was assessed in pulldown assays with recombinant NAP57. RESULTS: The SHQ1 mutations were the only set of mutations consistent with an autosomal recessive mode of inheritance. The mutations map to the SHQ1-NAP57 interface and impair the interaction of the recombinant SHQ1 variants with NAP57. CONCLUSION: Intrauterine growth retardation and the neurological phenotype of the patient are reminiscent of the severe clinical variant of DC, the Hoyeraal-Hreidarsson syndrome (HH). Hence, SHQ1 screening may be warranted in patients with inherited bone marrow failure syndromes.


Asunto(s)
Proteínas Portadoras/genética , Disqueratosis Congénita/genética , Secuencia de Bases , Encéfalo/diagnóstico por imagen , Proteínas Portadoras/metabolismo , Análisis Mutacional de ADN , Disqueratosis Congénita/diagnóstico , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Imagen por Resonancia Magnética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Linaje , Polimorfismo de Nucleótido Simple , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Secuenciación del Exoma
8.
Nucleic Acids Res ; 43(18): 8973-89, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26275778

RESUMEN

The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.


Asunto(s)
Proteínas del Ojo/metabolismo , Chaperonas Moleculares/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas del Complejo SMN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Línea Celular , Cuerpos Enrollados/metabolismo , Citoplasma/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/genética , Células HeLa , Humanos , Mutagénesis Insercional , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética
9.
J Cell Biol ; 207(4): 463-80, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25404746

RESUMEN

In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.


Asunto(s)
Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Proteómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción
10.
Nucleic Acids Res ; 42(3): 2015-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24234454

RESUMEN

The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K-Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K-Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p-Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas Ribosómicas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estabilidad del ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática
11.
Plant J ; 65(5): 807-19, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21261762

RESUMEN

In all eukaryotes, C/D small nucleolar ribonucleoproteins (C/D snoRNPs) are essential for methylation and processing of ribosomal RNAs. They consist of a box C/D small nucleolar RNA (C/D snoRNA) associated with four highly conserved nucleolar proteins. Recent data in HeLa cells and yeast have revealed that assembly of these snoRNPs is directed by NUFIP protein and other auxiliary factors. Nevertheless, the precise function and biological importance of NUFIP and the other assembly factors remains unknown. In plants, few studies have focused on RNA methylation and snoRNP biogenesis. Here, we identify and characterise the AtNUFIP gene that directs assembly of C/D snoRNP. To elucidate the function of AtNUFIP in planta, we characterized atnufip mutants. These mutants are viable but have severe developmental phenotypes. Northern blot analysis of snoRNA accumulation in atnufip mutants revealed a specific degradation of C/D snoRNAs and this situation is correlated with a reduction in rRNA methylation. Remarkably, the impact of AtNUFIP depends on the structure of snoRNA genes: it is essential for the accumulation of those C/D snoRNAs encoded by polycistronic genes, but not by monocistronic or tsnoRNA genes. We propose that AtNUFIP controls the kinetics of C/D snoRNP assembly on nascent precursors to overcome snoRNA degradation of aberrant RNPs. Finally, we show that AtNUFIP has broader RNP targets, controlling the accumulation of scaRNAs that direct methylation of spliceosomal snRNA in Cajal bodies.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Nucleolar Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Metilación , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estabilidad del ARN , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...