Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(14): 4225-4243, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37094092

RESUMEN

Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.


Asunto(s)
Beauveria , Enfermedades de las Plantas , Solanum lycopersicum , Beauveria/fisiología , Botrytis/fisiología , Desarrollo de la Planta , Enfermedades de las Plantas/microbiología , Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/fisiología , Hojas de la Planta/metabolismo , Proteoma , Simbiosis
2.
Plants (Basel) ; 11(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432905

RESUMEN

During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.

3.
Front Plant Sci ; 13: 995178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212312

RESUMEN

Plant growth and response to environmental cues are largely driven by hormones. Salicylic acid (SA)- and jasmonic acid (JA)-mediated defenses have been shown to be effective against different types of attackers. SA-mediated defense is mainly effective against biotrophic pathogens and phloem-feeding insects, whereas JA-mediated defense is effective against necrotrophic pathogens and tissue-damaging insects. Cytokinins (CKs) are classic growth hormones that have also emerged as plant immunity modulators. Evidence pointed out that CKs contribute to the defense responses mediated by SA and JA, acting as hormone modulators of the SA/JA signaling backbone. Recently, we identified in Arabidopsis a type-B response regulator 11 (ARR 11) involved in cytokinin-mediated responses as a novel regulator of the SA/JA cross-talk. Here we investigated plant fitness and resistance against the fungal necrotrophic pathogen Botrytis cinerea in Arabidopsis wild-type Col-8 and defective arr11 mutant following SA, JA, CK single or combined treatment. Our results demonstrated that the CK and SA/JA/CK combination has a positive outcome on plant fitness in both Arabidopsis Col-8 and arr11 mutant,. The triple hormone treatment is efficient in increasing resistance to B. cinerea in Col-8 and this effect is stronger in arr11 mutant. The results will provide not only new background knowledge, corroborating the role of ARR11 in plant-defense related processes, but also new potential opportunities for alternative ways of protecting plants from fungal diseases.

4.
Biomaterials ; 32(11): 3085-93, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21269689

RESUMEN

Recombinant adenovirus (Ad) has shown great promise in gene therapy. Artificial envelopment of adenovirus within lipid bilayers has previously been shown to decrease the immunogenicity and hepatic affinity of naked Ad in vivo. Unfortunately, this also resulted in a significant reduction of gene expression, which we attributed to poor endosomal release of the Ad from its artificial lipid envelope. In this work, we explored the artificial envelopment of Ad within pH-sensitive DOPE:CHEMS bilayers and characterized this vector by TEM, AFM, dot blot, dynamic light scattering and zeta potential measurements. The artificially enveloped viral vectors exhibited good stability at physiological pH but immediately collapsed and released naked Ad virions at pH 5.5. Intracellular trafficking using confocal laser scanning microscopy (CLSM) revealed that Cy3-labelled Ad enveloped in DOPE:CHEMS bilayers exhibited the characteristic Ad distribution within the cytoplasm that led to virion accumulation around the nuclear membrane, indicating endosomal release of Ad. We obtained equivalent levels of gene expression as those of naked Ad in a series of CAR-positive (CAR+) and CAR-negative (CAR-) cell lines. This suggested that the mechanism of infection for the artificially enveloped Ad remained dependent on the presence of CAR receptors. Finally, the pH-sensitive enveloped Ad were injected intratumorally in human cervical carcinoma xenograft-bearing nude mice, also illustrating their capacity for efficient in vivo marker gene expression. This study is a step forward toward the engineering of functional, artificially enveloped adenovirus vectors for gene transfer applications.


Asunto(s)
Adenoviridae/química , Adenoviridae/genética , Fosfatidiletanolaminas/química , Neoplasias del Cuello Uterino/terapia , Animales , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Femenino , Expresión Génica , Terapia Genética/métodos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Receptores Virales/genética , Receptores Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA