Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Biol Chem ; 300(5): 107220, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38522517

RESUMEN

Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.

2.
Nat Methods ; 21(3): 531-540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279009

RESUMEN

Analysis across a growing number of single-cell perturbation datasets is hampered by poor data interoperability. To facilitate development and benchmarking of computational methods, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform quality control pipelines and harmonize feature annotations. The resulting information resource, scPerturb, enables development and testing of computational methods, and facilitates comparison and integration across datasets. We describe energy statistics (E-statistics) for quantification of perturbation effects and significance testing, and demonstrate E-distance as a general distance measure between sets of single-cell expression profiles. We illustrate the application of E-statistics for quantifying similarity and efficacy of perturbations. The perturbation-response datasets and E-statistics computation software are publicly available at scperturb.org. This work provides an information resource for researchers working with single-cell perturbation data and recommendations for experimental design, including optimal cell counts and read depth.


Asunto(s)
Proteómica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Epigenómica , Análisis de la Célula Individual
3.
J Theor Biol ; 579: 111716, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38135033

RESUMEN

Drug resistance is a major challenge for curative cancer treatment, representing the main reason of death in patients. Evolutionary biology suggests pauses between treatment rounds as a way to delay or even avoid resistance emergence. Indeed, this approach has already shown promising preclinical and early clinical results, and stimulated the development of mathematical models for finding optimal treatment protocols. Due to their complexity, however, these models do not lend themself to a rigorous mathematical analysis, hence so far clinical recommendations generally relied on numerical simulations and ad-hoc heuristics. Here, we derive two mathematical models describing tumour growth under genetic and epigenetic treatment resistance, respectively, which are simple enough for a complete analytical investigation. First, we find key differences in response to treatment protocols between the two modes of resistance. Second, we identify the optimal treatment protocol which leads to the largest possible tumour shrinkage rate. Third, we fit the "epigenetic model" to previously published xenograft experiment data, finding excellent agreement, underscoring the biological validity of our approach. Finally, we use the fitted model to calculate the optimal treatment protocol for this specific experiment, which we demonstrate to cause curative treatment, making it superior to previous approaches which generally aimed at stabilising tumour burden. Overall, our approach underscores the usefulness of simple mathematical models and their analytical examination, and we anticipate our findings to guide future preclinical and, ultimately, clinical research in optimising treatment regimes.


Asunto(s)
Neoplasias , Tratamiento Insuficiente , Humanos , Neoplasias/patología , Modelos Teóricos , Evolución Biológica
4.
Sci Rep ; 13(1): 20840, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012155

RESUMEN

One important aim of precision oncology is a personalized treatment of patients. This can be achieved by various biomarkers, especially imaging parameters and gene expression signatures are commonly used. So far, combination approaches are sparse. The aim of the study was to independently validate the prognostic value of the novel positron emission tomography (PET) parameter tumor asphericity (ASP) in non small cell lung cancer (NSCLC) patients and to investigate associations between published gene expression profiles and ASP. This was a retrospective evaluation of PET imaging and gene expression data from three public databases and two institutional datasets. The whole cohort comprised 253 NSCLC patients, all treated with curative intent surgery. Clinical parameters, standard PET parameters and ASP were evaluated in all patients. Additional gene expression data were available for 120 patients. Univariate Cox regression and Kaplan-Meier analysis was performed for the primary endpoint progression-free survival (PFS) and additional endpoints. Furthermore, multivariate cox regression testing was performed including clinically significant parameters, ASP, and the extracellular matrix-related prognostic gene signature (EPPI). In the whole cohort, a significant association with PFS was observed for ASP (p < 0.001) and EPPI (p = 0.012). Upon multivariate testing, EPPI remained significantly associated with PFS (p = 0.018) in the subgroup of patients with additional gene expression data, while ASP was significantly associated with PFS in the whole cohort (p = 0.012). In stage II patients, ASP was significantly associated with PFS (p = 0.009), and a previously published cutoff value for ASP (19.5%) was successfully validated (p = 0.008). In patients with additional gene expression data, EPPI showed a significant association with PFS, too (p = 0.033). The exploratory combination of ASP and EPPI showed that the combinatory approach has potential to further improve patient stratification compared to the use of only one parameter. We report the first successful validation of EPPI and ASP in stage II NSCLC patients. The combination of both parameters seems to be a very promising approach for improvement of risk stratification in a group of patients with urgent need for a more personalized treatment approach.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Pronóstico , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Fluorodesoxiglucosa F18/metabolismo , Tomografía Computarizada por Rayos X , Medicina de Precisión , Tomografía Computarizada por Tomografía de Emisión de Positrones
5.
Mol Syst Biol ; 19(11): e11510, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37735975

RESUMEN

For a short period during early development of mammalian embryos, both X chromosomes in females are active, before dosage compensation is ensured through X-chromosome inactivation. In female mouse embryonic stem cells (mESCs), which carry two active X chromosomes, increased X-dosage affects cell signaling and impairs differentiation. The underlying mechanisms, however, remain poorly understood. To dissect X-dosage effects on the signaling network in mESCs, we combine systematic perturbation experiments with mathematical modeling. We quantify the response to a variety of inhibitors and growth factors for cells with one (XO) or two X chromosomes (XX). We then build models of the signaling networks in XX and XO cells through a semi-quantitative modeling approach based on modular response analysis. We identify a novel negative feedback in the PI3K/AKT pathway through GSK3. Moreover, the presence of a single active X makes mESCs more sensitive to the differentiation-promoting Activin A signal and leads to a stronger RAF1-mediated negative feedback in the FGF-triggered MAPK pathway. The differential response to these differentiation-promoting pathways can explain the impaired differentiation propensity of female mESCs.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Femenino , Animales , Masculino , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias/metabolismo , Caracteres Sexuales , Glucógeno Sintasa Quinasa 3 , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Diferenciación Celular/genética , Mamíferos
6.
Cancers (Basel) ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370765

RESUMEN

BACKGROUND: Tumour heterogeneity in high-grade serous ovarian cancer (HGSOC) is a proposed cause of acquired resistance to treatment and high rates of relapse. Among the four distinct molecular subtypes of HGSOC, the mesenchymal subtype (MES) has been observed with high frequency in several study cohorts. Moreover, it exhibits aggressive characteristics with poor prognosis. The failure to adequately exploit such subtypes for treatment results in high mortality rates, highlighting the need for effective targeted therapeutic strategies that follow the idea of personalized medicine (PM). METHODS: As a proof-of-concept, bulk and single-cell RNA data were used to characterize the distinct composition of the tumour microenvironment (TME), as well as the cell-cell communication and its effects on downstream transcription of MES. Moreover, transcription factor activity contextualized with causal inference analysis identified novel therapeutic targets with potential causal impact on transcription factor dysregulation promoting the malignant phenotype. FINDINGS: Fibroblast and macrophage phenotypes are of utmost importance for the complex intercellular crosstalk of MES. Specifically, tumour-associated macrophages were identified as the source of interleukin 1 beta (IL1B), a signalling molecule with significant impact on downstream transcription in tumour cells. Likewise, signalling molecules tumour necrosis factor (TNF), transforming growth factor beta (TGFB1), and C-X-C motif chemokine 12 (CXCL12) were prominent drivers of downstream gene expression associated with multiple cancer hallmarks. Furthermore, several consistently hyperactivated transcription factors were identified as potential sources for treatment opportunities. Finally, causal inference analysis identified Yes-associated protein 1 (YAP1) and Nuclear Receptor Subfamily 2 Group F Member 6 (NR2F6) as novel therapeutic targets in MES, verified in an independent dataset. INTERPRETATION: By utilizing a sophisticated bioinformatics approach, several candidates for treatment opportunities, including YAP1 and NR2F6 were identified. These candidates represent signalling regulators within the cellular network of the MES. Hence, further studies to confirm these candidates as potential targeted therapies in PM are warranted.

7.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017636

RESUMEN

Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.


Asunto(s)
Diferenciación Celular , Neoplasias Colorrectales , Oncogenes , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Intestinos , Mutación
8.
Nat Microbiol ; 8(5): 860-874, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012419

RESUMEN

Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Vacunas Atenuadas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacuna BNT162 , Pandemias , Mesocricetus
9.
Nucleic Acids Res ; 51(4): e20, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629274

RESUMEN

The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.


Asunto(s)
Aprendizaje Profundo , Redes Reguladoras de Genes , Neoplasias , Análisis de Expresión Génica de una Sola Célula , Humanos , Regulación de la Expresión Génica , Neoplasias/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
10.
J Theor Biol ; 557: 111327, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36341757

RESUMEN

Differentiated cancer cells may regain stem cell characteristics; however, the effects of such a cellular dedifferentiation on tumoural growth and treatment are currently understudied. Thus, we here extend a mathematical model of cancer stem cell (CSC) driven tumour growth to also include dedifferentiation. We show that dedifferentiation increases the likelihood of tumorigenesis and the speed of tumoural growth, both modulated by the proliferative potential of the non-stem cancer cells (NSCCs). We demonstrate that dedifferentiation also may lead to treatment evasion, especially when a treatment solely targets CSCs. Conversely, targeting both CSCs and NSCCs in parallel is shown to be more robust to dedifferentiation. Despite dedifferentiation, perturbing CSC-related parameters continues to exert the largest relative effect on tumoural growth; however, we show the existence of synergies between specific CSC- and NSCC-directed treatments which cause superadditive reductions of tumoural growth. Overall, our study demonstrates various effects of dedifferentiation on growth and treatment of tumoural lesions, and we anticipate our results to be helpful in guiding future molecular and clinical research on limiting tumoural growth in vivo.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Carcinogénesis , Transformación Celular Neoplásica , Células Madre Neoplásicas , Probabilidad
11.
Cells ; 11(21)2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359802

RESUMEN

Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.


Asunto(s)
Teratógenos , Pruebas de Toxicidad , Humanos , Teratógenos/toxicidad , Diferenciación Celular , Células Madre , Técnicas In Vitro
12.
Nat Commun ; 13(1): 5878, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198679

RESUMEN

The human gastric epithelium forms highly organized gland structures with different subtypes of cells. The carcinogenic bacterium Helicobacter pylori can attach to gastric cells and subsequently translocate its virulence factor CagA, but the possible host cell tropism of H. pylori is currently unknown. Here, we report that H. pylori preferentially attaches to differentiated cells in the pit region of gastric units. Single-cell RNA-seq shows that organoid-derived monolayers recapitulate the pit region, while organoids capture the gland region of the gastric units. Using these models, we show that H. pylori preferentially attaches to highly differentiated pit cells, marked by high levels of GKN1, GKN2 and PSCA. Directed differentiation of host cells enable enrichment of the target cell population and confirm H. pylori preferential attachment and CagA translocation into these cells. Attachment is independent of MUC5AC or PSCA expression, and instead relies on bacterial TlpB-dependent chemotaxis towards host cell-released urea, which scales with host cell size.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Hormonas Peptídicas , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Quimiotaxis , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Humanos , Hormonas Peptídicas/metabolismo , Tropismo , Urea/metabolismo , Factores de Virulencia/metabolismo
13.
iScience ; 25(8): 104760, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992065

RESUMEN

Targeted inhibition of aberrant signaling is an important treatment strategy in cancer, but responses are often short-lived. Multi-drug combinations have the potential to mitigate this, but to avoid toxicity such combinations must be selective and given at low dosages. Here, we present a pipeline to identify promising multi-drug combinations. We perturbed an isogenic PI3K mutant and wild-type cell line pair with a limited set of drugs and recorded their signaling state and cell viability. We then reconstructed their signaling networks and mapped the signaling response to changes in cell viability. The resulting models, which allowed us to predict the effect of unseen combinations, indicated that no combination selectively reduces the viability of the PI3K mutant cells. However, we were able to validate 25 of the 30 combinations that we predicted to be anti-selective. Our pipeline enables efficient prioritization of multi-drug combinations from the enormous search space of possible combinations.

14.
J Hepatol ; 77(5): 1386-1398, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863491

RESUMEN

BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Hepatocitos/metabolismo , Humanos , Intestinos
15.
Mol Cancer ; 21(1): 126, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689207

RESUMEN

BACKGROUND: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.


Asunto(s)
Neuroblastoma , Medicina de Precisión , Quinasa de Linfoma Anaplásico/genética , Línea Celular Tumoral , Niño , Humanos , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
16.
Nat Commun ; 13(1): 2838, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595749

RESUMEN

Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com .


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Meristema , Flores , Expresión Génica , Proteínas de Plantas/genética , ARN , Análisis de Secuencia de ARN
17.
Sci Rep ; 12(1): 5569, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35368028

RESUMEN

The intestinal epithelium is one of the fastest renewing tissues in mammals. It shows a hierarchical organisation, where intestinal stem cells at the base of crypts give rise to rapidly dividing transit amplifying cells that in turn renew the pool of short-lived differentiated cells. Upon injury and stem-cell loss, cells can also de-differentiate. Tissue homeostasis requires a tightly regulated balance of differentiation and stem cell proliferation, and failure can lead to tissue extinction or to unbounded growth and cancerous lesions. Here, we present a two-compartment mathematical model of intestinal epithelium population dynamics that includes a known feedback inhibition of stem cell differentiation by differentiated cells. The model shows that feedback regulation stabilises the number of differentiated cells as these become invariant to changes in their apoptosis rate. Stability of the system is largely independent of feedback strength and shape, but specific thresholds exist which if bypassed cause unbounded growth. When dedifferentiation is added to the model, we find that the system can recover faster after certain external perturbations. However, dedifferentiation makes the system more prone to losing homeostasis. Taken together, our mathematical model shows how a feedback-controlled hierarchical tissue can maintain homeostasis and can be robust to many external perturbations.


Asunto(s)
Mucosa Intestinal , Células Madre , Animales , Diferenciación Celular , Retroalimentación , Mamíferos , Modelos Teóricos
18.
Chem Res Toxicol ; 35(5): 760-773, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35416653

RESUMEN

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Transcriptoma , Sustancias Peligrosas , Humanos , Técnicas In Vitro , Teratógenos
19.
Mol Ther ; 30(5): 1952-1965, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35339689

RESUMEN

For coronavirus disease 2019 (COVID-19), effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity, and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, on infection and host responses. By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of single or combinatorial treatments. Pulmonary viral burden was reduced by anti-SARS-CoV-2 antibody treatment and unaltered or increased by dexamethasone alone. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a specifically responsive subpopulation of neutrophils, thereby indicating a potential mechanism of action. Our analyses confirm the anti-inflammatory properties of dexamethasone and suggest possible mechanisms, validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and reveal synergistic effects of a combination therapy, thus informing more effective COVID-19 therapies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Anticuerpos Antivirales , Antivirales , Cricetinae , Dexametasona/farmacología , SARS-CoV-2 , Transcriptoma
20.
Int J Cancer ; 150(12): 2058-2071, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35262195

RESUMEN

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in noninflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFß and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the noninflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets.


Asunto(s)
Tumor Carcinoide , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patología , Carcinoma Neuroendocrino/patología , Células Endoteliales/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Tumores Neuroendocrinos/patología , Pronóstico , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...