Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1292526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38163063

RESUMEN

Context: Viral and bacterial infections are major causes of morbidity and mortality worldwide. The oropharyngeal microbiome could play an important role in preventing invasion of viral and bacterial pathogens by modulating its content and the host's innate immune response. Next Generation Sequencing (NGS) technologies now enable in-depth study of the genomes of microbial communities. The objective of this review is to highlight how metagenomics has contributed to establish links between changes in the oropharyngeal microbiome and emergence of bacterial and viral diseases. Method: Two search engines, PubMed and Google scholar were used with filters to focus searches on peer-reviewed original articles published between January 2010 and September 2022. Different keywords were used and only articles with metagenomic approaches were included. Results: This review shows that there were few articles studying the link between oropharyngeal microbiome and infectious diseases. Studies on viruses using metagenomic techniques have been growing exponentially in recent years due to the Covid-19 pandemic. This review shows that most studies still focus on the basic identification of microorganisms in different disease states and multiple microorganisms (Alloprevotella, Prevotella, Bacteroides, Haemophilus, Streptococcus, Klebsiella sp., Acinetobacter sp…), have been associated with development of infections such as childhood wheezing, influenza, Covid-19, pneumonia, meningitis, and tuberculosis. Conclusion: The oropharyngeal microbiome, despite its importance, remains poorly studied. A limited number of articles were identified but this number has increased exponentially since 2020 due to research conducted on Covid-19. These studies have shown that metagenomic has contributed to the unbiased identification of bacteria that could be used as biomarkers of various diseases and that further research is now needed to capitalize on those findings for human health benefit.

2.
Ann Parasitol ; 60(4): 259-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25706423

RESUMEN

As a result of widespread resistance to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP), artemisinin-based combination therapy (ACT) has been recommended as a first-line anti-malarial regimen in Côte d'Ivoire since 2005. A thorough understanding of the molecular bases of P. falciparum resistance to existing drugs is therefore needed. The aims of this study were to analyze the in vitro sensitivity of P. falciparum field isolates from Abobo to CQ, pyronaridine (PYR) and dihydroartemisinine (DHA), and to investigate the polymorphisms associated with drug resistance. The standard in vitro drug sensitivity microtechnique recommended by the WHO was used to assess the sensitivity of Plasmodium falciparum isolates collected in December 2006. The Pfcrt haplotype 76 was analysed by PCR-RFLP while Pfatpase 6 amplification products were sequenced. Associations between drug sensitivity and parasite gene polymorphisms were evaluated with Cohen's kappa test. The correlation between the IC50 values for different drugs was assessed by the coefficient of determination (r²). Significance was assumed at p<0.05. Of 128 in vitro tests performed, 112 (87.5%) were successful. Of the isolates, 56.2% were resistant for CQ and 48% for PYR. One isolate (3.6%) demonstrated reduced DHA sensitivity (IC50 higher than 10 nM). The mutant K76T pfcrt codon, present in 90% of DNA fragments analyzed, was associated with CQ-R (ĸ=0.76). The N669Y (16.1%), D734Y (28.6%) and D734H (1.8%) isolates were found to have mutant Pfatpase6, however, these mutations were not associated with diminished DHA sensitivity (k=0.01). These high levels of antimalarial drug resistance in Abobo (Côte d'Ivoire) demand further studies of drug efficacy across the whole country.


Asunto(s)
Artemisininas/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Antimaláricos/farmacología , Côte d'Ivoire/epidemiología , Regulación de la Expresión Génica/fisiología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA