Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 193(9): 1298-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328102

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, currently untreatable Schwann cell-derived neoplasms with hyperactive mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. To identify potential therapeutic targets, previous studies used genome-scale shRNA screens that implicated the neuregulin-1 receptor erb-B2 receptor tyrosine kinase 3 (erbB3) in MPNST proliferation and/or survival. The current study shows that erbB3 is commonly expressed in MPNSTs and MPNST cell lines and that erbB3 knockdown inhibits MPNST proliferation and survival. Kinomic and microarray analyses of Schwann and MPNST cells implicate Src- and erbB3-mediated calmodulin-regulated signaling as key pathways. Consistent with this, inhibition of upstream (canertinib, sapitinib, saracatinib, and calmodulin) and parallel (AZD1208) signaling pathways involving mitogen-activated protein kinase and mammalian target of rapamycin reduced MPNST proliferation and survival. ErbB inhibitors (canertinib and sapitinib) or erbB3 knockdown in combination with Src (saracatinib), calmodulin [trifluoperazine (TFP)], or proviral integration site of Moloney murine leukemia kinase (AZD1208) inhibition even more effectively reduces proliferation and survival. Drug inhibition enhances an unstudied calmodulin-dependent protein kinase IIα phosphorylation site in an Src-dependent manner. The Src family kinase inhibitor saracatinib reduces both basal and TFP-induced erbB3 and calmodulin-dependent protein kinase IIα phosphorylation. Src inhibition (saracatinib), like erbB3 knockdown, prevents these phosphorylation events; and when combined with TFP, it even more effectively reduces proliferation and survival compared with monotherapy. These findings implicate erbB3, calmodulin, proviral integration site of Moloney murine leukemia kinases, and Src family members as important therapeutic targets in MPNSTs and demonstrate that combinatorial therapies targeting critical MPNST signaling pathways are more effective.


Asunto(s)
Leucemia , Neoplasias de la Vaina del Nervio , Neurofibrosarcoma , Humanos , Ratones , Animales , Receptor ErbB-2/metabolismo , Receptor ErbB-2/uso terapéutico , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Calmodulina/metabolismo , Calmodulina/farmacología , Calmodulina/uso terapéutico , Sirolimus/farmacología , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Mamíferos/metabolismo
2.
Am J Pathol ; 189(10): 1898-1912, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351986

RESUMEN

It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Receptor ErbB-3/metabolismo , Carcinogénesis/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilación , Transducción de Señal
3.
J Immunol ; 195(4): 1676-84, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26179905

RESUMEN

HSV-1 latently infects most humans, causing a variable clinical picture that depends, in part, on host genetic factors. Both IgG and its cellular FcRs, CD16A and CD32A-C (encoded by FCGR3A and FCGR2A-C, respectively, on chromosome 1), display polymorphisms that could affect their defensive function. Of potential relevance are a FCGR3A dimorphism resulting in CD16A-valine/phenylalanine-158 allotypes with different IgG affinity, variations conditioning NK cell expression of CD32B or CD32C, and IgG1 H chain (IGHG1) and kappa-chain (IGKC) polymorphisms determining allotypes designated G1m and Km. In this study, we assessed the contribution of Ig genetic variations and their interaction with FcR polymorphism to HSV-1 susceptibility, as well as their impact on NK cell-mediated Ab-dependent cellular cytotoxicity (ADCC). Our results show an epistatic interaction between IGHG1 and FCGR3A such that the higher affinity CD16A-158V/V genotype associates with an asymptomatic course of HSV-1 infection only in homozygotes for G1m3. Furthermore, CD16A-158V and G1m3 allotypes enhanced ADCC against opsonized HSV-1-infected fibroblasts. Conversely, Km allotypes and CD32B or CD32C expression on NK cells did not significantly influence HSV-1 susceptibility or ADCC. NK cells degranulating against immune serum-opsonized HSV-1-infected fibroblasts had heterogeneous phenotypes. Yet, enhanced ADCC was observed among NK cells showing a differentiated, memory-like phenotype (NKG2C(bright)NKG2A(-)CD57(+)FcRγ(-)), which expand in response to human CMV. These results extend our knowledge on the importance of immunogenetic polymorphisms and NK cell-Ab interplay in the host response against HSV-1 and point to the relevance of interactions between immune responses elicited during chronic coinfection by multiple herpesviruses.


Asunto(s)
Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Inmunoglobulina G/inmunología , Células Asesinas Naturales/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Degranulación de la Célula/genética , Degranulación de la Célula/inmunología , Línea Celular , Susceptibilidad a Enfermedades , Epistasis Genética , Expresión Génica , Variación Genética , Genotipo , Herpes Simple/genética , Humanos , Inmunoglobulina G/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas kappa de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/inmunología , Inmunofenotipificación , Fenotipo , Polimorfismo Genético , Receptores de IgG/genética , Receptores de IgG/metabolismo , Activación Viral/inmunología
4.
Circ Cardiovasc Genet ; 4(6): 605-13, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22010139

RESUMEN

BACKGROUND: Increasing evidence points to a direct role for altered microRNA (miRNA or miR) expression levels in cardiovascular remodeling and disease progression. Although alterations in miR expression levels have been directly linked to cardiac hypertrophy, fibrosis, and remodeling, their role in regulating gene expression during thoracic aortic aneurysm (TAA) development has yet to be explored. METHODS AND RESULTS: The present study examined miR expression levels in aortic tissue specimens collected from patients with ascending TAAs by quantitative real-time PCR, and observed decreased miR expression (miRs -1, -21, -29a, -133a, and -486) as compared with normal aortic specimens. A significant relationship between miR expression levels (miRs -1, -21, -29a, and -133a) and aortic diameter was identified; as aortic diameter increased, miR expression decreased. Through the use of a bioinformatics approach, members of the matrix metalloproteinase (MMP) family, proteins involved in TAA development, were examined for putative miR binding sites. MMP-2 and MMP-9 were identified as potential targets for miR-29a and miR-133a, respectively, and MMP-2 was subsequently verified as a miR-29a target in vitro. A significant inverse relationship between miR-29a and total MMP-2 was then identified in the clinical TAA specimens. CONCLUSIONS: These findings demonstrate altered miR expression patterns in clinical TAA specimens, suggesting that the loss of specific miR expression may allow for the elaboration of specific MMPs capable of driving aortic remodeling during TAA development. Importantly, these data suggest that these miRs have biological and clinical relevance to the behavior of TAAs and may provide significant targets for therapeutic and diagnostic applications.


Asunto(s)
Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/genética , Regulación hacia Abajo , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/genética , Anciano , Aorta Torácica/crecimiento & desarrollo , Aneurisma de la Aorta Torácica/enzimología , Aneurisma de la Aorta Torácica/metabolismo , Femenino , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/metabolismo , Persona de Mediana Edad , Tamaño de los Órganos
5.
Am J Physiol Heart Circ Physiol ; 301(4): H1656-66, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21666120

RESUMEN

The membrane type 1 matrix metalloproteinase (MT1-MMP) is increased in left ventricular (LV) failure. However, the direct effects of altered MT1-MMP levels on survival, LV function, and geometry following myocardial infarction (MI) and the proteolytic substrates involved in this process remain unclear. MI was induced in mice with cardiac-restricted overexpression of MT1-MMP (MT1-MMPexp; full length human), reduced MT1-MMP expression (heterozygous; MT1-MMP(+/-)), and wild type. Post-MI survival was reduced with MT1-MMPexp and increased with MT1-MMP(+/-) compared with WT. LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT post-MI and was higher in the MT1-MMP(+/-) mice. In vivo localization of MT1-MMP using antibody-conjugated microbubbles revealed higher MT1-MMP levels post-MI, which were the highest in the MT1-MMPexp group and the lowest in the MT1-MMP(+/-) group. LV collagen content within the MI region was higher in the MT1-MMPexp vs. WT post-MI and reduced in the MT1-MMP(+/-) group. Furthermore, it was demonstrated that MT1-MMP proteolytically processed the profibrotic molecule, latency-associated transforming growth factor-1-binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by over fourfold in the post-MI MT1-MMPexp group and reduced in the MT1-MMP(+/-) group, which was directionally paralleled by phospho-Smad-3 levels, a critical signaling component of the profibrotic transforming growth factor pathway. We conclude that modulating myocardial MT1-MMP levels affected LV function and matrix structure, and a contributory mechanism for these effects is through processing of profibrotic signaling molecules. These findings underscore the diversity of biological effects of certain MMP types on the LV remodeling process.


Asunto(s)
Corazón/fisiología , Metaloproteinasa 14 de la Matriz/fisiología , Infarto del Miocardio/enzimología , Remodelación Ventricular/fisiología , Animales , Colágeno/metabolismo , Inmunohistoquímica , Estimación de Kaplan-Meier , Proteínas de Unión a TGF-beta Latente/metabolismo , Metaloproteinasa 14 de la Matriz/biosíntesis , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Noqueados , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteína Smad2/biosíntesis , Proteína Smad2/genética , Sobrevida , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...