Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 215(3): 107981, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37245604

RESUMEN

Biomaterials for tissue regeneration must mimic the biophysical properties of the native physiological environment. A protein engineering approach allows the generation of protein hydrogels with specific and customised biophysical properties designed to suit a particular physiological environment. Herein, repetitive engineered proteins were successfully designed to form covalent molecular networks with defined physical characteristics able to sustain cell phenotype. Our hydrogel design was made possible by the incorporation of the SpyTag (ST) peptide and multiple repetitive units of the SpyCatcher (SC) protein that spontaneously formed covalent crosslinks upon mixing. Changing the ratios of the protein building blocks (ST:SC), allowed the viscoelastic properties and gelation speeds of the hydrogels to be altered and controlled. The physical properties of the hydrogels could readily be altered further to suit different environments by tuning the key features in the repetitive protein sequence. The resulting hydrogels were designed with a view to allow cell attachment and encapsulation of liver derived cells. Biocompatibility of the hydrogels was assayed using a HepG2 cell line constitutively expressing GFP. The cells remained viable and continued to express GFP whilst attached or encapsulated within the hydrogel. Our results demonstrate how this genetically encoded approach using repetitive proteins could be applied to bridge engineering biology with nanotechnology creating a level of biomaterial customisation previously inaccessible.


Asunto(s)
Hidrogeles , Análisis por Matrices de Proteínas , Proteínas/genética , Materiales Biocompatibles/química , Secuencia de Aminoácidos
2.
J Mol Biol ; 433(19): 167200, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34400181

RESUMEN

Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Linfocitos T/citología , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacología , Línea Celular , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacología , Ratones , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Linfocitos T/efectos de los fármacos , Uridina Difosfato N-Acetilglucosamina/metabolismo
3.
Nat Commun ; 12(1): 1052, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594070

RESUMEN

The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.


Asunto(s)
Glucólisis/efectos de los fármacos , Fosfofructoquinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Trypanosoma/enzimología , Tripanosomiasis Africana/metabolismo , Tripanosomiasis Africana/parasitología , Enfermedad Aguda , Regulación Alostérica/efectos de los fármacos , Animales , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Estimación de Kaplan-Meier , Ratones , Parásitos/efectos de los fármacos , Fosfofructoquinasas/química , Fosfofructoquinasas/metabolismo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Multimerización de Proteína , Relación Estructura-Actividad , Trypanosoma/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico
4.
J Cell Sci ; 133(16)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32665320

RESUMEN

During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores to facilitate chromosome alignment. The spindle checkpoint protein BubR1 (also known as BUB1B) has been reported as a CENP-E interacting partner, but the extent to which BubR1 contributes to CENP-E localization at kinetochores has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, and a minimal key acidic patch on the kinetochore-targeting domain of CENP-E is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical for alignment of chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Células HeLa , Humanos , Microtúbulos , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático
5.
Chem Sci ; 10(2): 542-547, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30746096

RESUMEN

Cyclophilins (Cyps) are a major family of drug targets that are challenging to prosecute with small molecules because the shallow nature and high degree of conservation of the active site across human isoforms offers limited opportunities for potent and selective inhibition. Herein a computational approach based on molecular dynamics simulations and free energy calculations was combined with biophysical assays and X-ray crystallography to explore a flip in the binding mode of a reported urea-based Cyp inhibitor. This approach enabled access to a distal pocket that is poorly conserved among key Cyp isoforms, and led to the discovery of a new family of sub-micromolar cell-active inhibitors that offer unprecedented opportunities for the development of next-generation drug therapies based on Cyp inhibition. The computational approach is applicable to a broad range of organic functional groups and could prove widely enabling in molecular design.

6.
Biochem J ; 475(20): 3275-3291, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30254098

RESUMEN

We show here that the M2 isoform of human pyruvate kinase (M2PYK) is susceptible to nitrosation and oxidation, and that these modifications regulate enzyme activity by preventing the formation of the active tetrameric form. The biotin-switch assay carried out on M1 and M2 isoforms showed that M2PYK is sensitive to nitrosation and that Cys326 is highly susceptible to redox modification. Structural and enzymatic studies have been carried out on point mutants for three cysteine residues (Cys424, Cys358, and Cys326) to characterise their potential roles in redox regulation. Nine cysteines are conserved between M2PYK and M1PYK. Cys424 is the only cysteine unique to M2PYK. C424S, C424A, and C424L showed a moderate effect on enzyme activity with 80, 100, and 140% activity, respectively, compared with M2PYK. C358 had been previously identified from in vivo studies to be the favoured target for oxidation. Our characterised mutant showed that this mutation stabilises tetrameric M2PYK, suggesting that the in vivo resistance to oxidation for the Cys358Ser mutation is due to stabilisation of the tetrameric form of the enzyme. In contrast, the Cys326Ser mutant exists predominantly in monomeric form. A biotin-switch assay using this mutant also showed a significant reduction in biotinylation of M2PYK, confirming that this is a major target for nitrosation and probably oxidation. Our results show that the sensitivity of M2PYK to oxidation and nitrosation is regulated by its monomer-tetramer equilibrium. In the monomer state, residues (in particular C326) are exposed to oxidative modifications that prevent reformation of the active tetrameric form.


Asunto(s)
Cisteína/metabolismo , Piruvato Quinasa/metabolismo , Cristalización , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Nitrosación/fisiología , Oxidación-Reducción , Estructura Secundaria de Proteína , Piruvato Quinasa/química
7.
Biochem J ; 475(10): 1821-1837, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29748232

RESUMEN

We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation Kd is estimated to be ∼0.9 µM with a slow dissociation rate (t1/2 ∼ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Regulación Alostérica , Dominio Catalítico , Proliferación Celular , Cristalografía por Rayos X , Humanos , Conformación Proteica , Multimerización de Proteína
8.
J Chem Phys ; 148(14): 145101, 2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-29655319

RESUMEN

Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 µs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.


Asunto(s)
Ciclofilinas/química , Mutación Puntual/genética , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos/genética , Termodinámica , Temperatura de Transición
9.
FEBS Open Bio ; 7(4): 533-549, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28396838

RESUMEN

We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his-tagged human cyclophilin-A. Our orientation-specific stabilisation approach captures his-tagged protein under 'physiological conditions' (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni2+-nitrilotriacetic acid surfaces, very briefly activated for primary amine-coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin-A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo-kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin-A-cyclosporin-A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin-A, from a screen of a fragment library. This fragment, 2,3-diaminopyridine, bound specifically with a mean affinity of 248 ± 60 µm. The X-ray structure of this 109-Da fragment bound in the active site of cyclophilin-A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin-A inhibitors.

10.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27920212

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are enteric bacterial pathogens of worldwide importance. Most EPEC and non-O157 EHEC strains express lymphostatin (also known as LifA), a chromosomally encoded 365-kDa protein. We previously demonstrated that lymphostatin is a putative glycosyltransferase that is important in intestinal colonization of cattle by EHEC serogroup O5, O111, and O26 strains. However, the nature and consequences of the interaction between lymphostatin and immune cells from the bovine host are ill defined. Using purified recombinant protein, we demonstrated that lymphostatin inhibits mitogen-activated proliferation of bovine T cells and, to a lesser extent, proliferation of cytokine-stimulated B cells, but not NK cells. It broadly affected the T cell compartment, inhibiting all cell subsets (CD4, CD8, WC-1, and γδ T cell receptor [γδ-TCR]) and cytokines examined (interleukin 2 [IL-2], IL-4, IL-10, IL-17A, and gamma interferon [IFN-γ]) and rendered T cells refractory to mitogen for a least 18 h after transient exposure. Lymphostatin was also able to inhibit proliferation of T cells stimulated by IL-2 and by antigen presentation using a Theileria-transformed cell line and autologous T cells from Theileria-infected cattle. We conclude that lymphostatin is likely to act early in T cell activation, as stimulation of T cells with concanavalin A, but not phorbol 12-myristate 13-acetate combined with ionomycin, was inhibited. Finally, a homologue of lymphostatin from E. coli O157:H7 (ToxB; L7095) was also found to possess comparable inhibitory activity against T cells, indicating a potentially conserved strategy for interference in adaptive responses by attaching and effacing E. coli.


Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos B/inmunología , Toxinas Bacterianas/inmunología , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Escherichia coli/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Presentación de Antígeno/inmunología , Linfocitos B/metabolismo , Adhesión Bacteriana , Bovinos , Citocinas/biosíntesis , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
11.
Mol Cell Proteomics ; 15(5): 1710-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944342

RESUMEN

Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
12.
J Biol Chem ; 291(11): 5803-5816, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26786100

RESUMEN

Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/inmunología , Enfermedades de los Bovinos/inmunología , Escherichia coli Enteropatógena/inmunología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/inmunología , Linfocitos T/microbiología , Secuencia de Aminoácidos , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Escherichia coli Enteropatógena/química , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Glicosiltransferasas/química , Glicosiltransferasas/inmunología , Humanos , Activación de Linfocitos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Linfocitos T/inmunología , Factores de Virulencia/inmunología , Difracción de Rayos X
13.
PLoS One ; 10(12): e0146164, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26717415

RESUMEN

We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors.


Asunto(s)
L-Lactato Deshidrogenasa/biosíntesis , Animales , Automatización de Laboratorios/métodos , Cromatografía de Afinidad/métodos , Cromatografía Liquida/métodos , Cristalografía por Rayos X/métodos , Medios de Cultivo , Escherichia coli/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/aislamiento & purificación , L-Lactato Deshidrogenasa/aislamiento & purificación , Lactato Deshidrogenasa 5 , Ratas , Proteínas Recombinantes/biosíntesis , Resonancia por Plasmón de Superficie/métodos
14.
Mol Cell Proteomics ; 14(11): 2973-87, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26330542

RESUMEN

CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Factor 1 Regulador del Interferón/genética , Linfocitos/metabolismo , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Regulación Alostérica , Sitios de Unión , Línea Celular Tumoral , Expresión Génica , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Factor 1 Regulador del Interferón/metabolismo , Cinética , Linfocitos/citología , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Biosci Rep ; 35(5)2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330616

RESUMEN

Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress.


Asunto(s)
Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Dominio Catalítico , Peptidil-Prolil Isomerasa F , Ciclofilinas/química , Proteínas HSP90 de Choque Térmico/química , Humanos , Modelos Moleculares , Desnaturalización Proteica , Mapas de Interacción de Proteínas , Temperatura
16.
PLoS One ; 10(2): e0116570, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659145

RESUMEN

MOTIVATION: Using molecular similarity to discover bioactive small molecules with novel chemical scaffolds can be computationally demanding. We describe Ultra-fast Shape Recognition with Atom Types (UFSRAT), an efficient algorithm that considers both the 3D distribution (shape) and electrostatics of atoms to score and retrieve molecules capable of making similar interactions to those of the supplied query. RESULTS: Computational optimization and pre-calculation of molecular descriptors enables a query molecule to be run against a database containing 3.8 million molecules and results returned in under 10 seconds on modest hardware. UFSRAT has been used in pipelines to identify bioactive molecules for two clinically relevant drug targets; FK506-Binding Protein 12 and 11ß-hydroxysteroid dehydrogenase type 1. In the case of FK506-Binding Protein 12, UFSRAT was used as the first step in a structure-based virtual screening pipeline, yielding many actives, of which the most active shows a KD, app of 281 µM and contains a substructure present in the query compound. Success was also achieved running solely the UFSRAT technique to identify new actives for 11ß-hydroxysteroid dehydrogenase type 1, for which the most active displays an IC50 of 67 nM in a cell based assay and contains a substructure radically different to the query. This demonstrates the valuable ability of the UFSRAT algorithm to perform scaffold hops. AVAILABILITY AND IMPLEMENTATION: A web-based implementation of the algorithm is freely available at http://opus.bch.ed.ac.uk/ufsrat/.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Algoritmos , Simulación por Computador , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Proteína 1A de Unión a Tacrolimus , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Proteína 1A de Unión a Tacrolimus/antagonistas & inhibidores , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo
17.
Chem Sci ; 6(5): 3109-3116, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28706685

RESUMEN

Developing approaches to discover protein-protein interactions (PPIs) remains a fundamental challenge. A chemical biology platform is applied here to identify novel PPIs for the AAA+ superfamily oncoprotein reptin. An in silico screen coupled with chemical optimization provided Liddean, a nucleotide-mimetic which modulates reptin's oligomerization status, protein-binding activity and global conformation. Combinatorial peptide phage library screening of Liddean-bound reptin with next generation sequencing identified interaction motifs including a novel reptin docking site on the p53 tumor suppressor protein. Proximity ligation assays demonstrated that endogenous reptin forms a predominantly cytoplasmic complex with its paralog pontin in cancer cells and Liddean promotes a shift of this complex to the nucleus. An emerging view of PPIs in higher eukaryotes is that they occur through a striking diversity of linear peptide motifs. The discovery of a compound that alters reptin's protein interaction landscape potentially leads to novel avenues for therapeutic development.

18.
J Clin Invest ; 125(1): 413-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25500883

RESUMEN

Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.


Asunto(s)
Autoinmunidad/genética , Reparación del ADN , Lupus Eritematoso Sistémico/genética , Dímeros de Pirimidina/metabolismo , Proliferación Celular , Células Cultivadas , Análisis Mutacional de ADN , Expresión Génica , Heterocigoto , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Dímeros de Pirimidina/genética , Ribonucleasa H/genética
19.
Biochem Biophys Res Commun ; 450(2): 936-41, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24984149

RESUMEN

Three structurally distinct forms of phosphoglycerate mutase from the trypanosomatid parasite Leishmania mexicana were isolated by standard procedures of bacterial expression and purification. Analytical size-exclusion chromatography coupled to a multi-angle scattering detector detected two monomeric forms of differing hydrodynamic radii, as well as a dimeric form. Structural comparisons of holoenzyme and apoenzyme trypanosomatid cofactor-independent phosphoglycerate mutase (iPGAM) X-ray crystal structures show a large conformational change between the open (apoenzyme) and closed (holoenzyme) forms accounting for the different monomer hydrodynamic radii. Until now iPGAM from trypanosomatids was considered to be only monomeric, but results presented here show the appearance of a dimeric form. Taken together, these observations are important for the choice of screening strategies to identify inhibitors of iPGAM for parasite chemotherapy and highlight the need to select the most biologically or functionally relevant form of the purified enzyme.


Asunto(s)
Leishmania mexicana/enzimología , Fosfoglicerato Mutasa/química , Apoenzimas/química , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Cristalografía por Rayos X , Holoenzimas/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Especificidad por Sustrato
20.
Cell Signal ; 26(6): 1243-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24583282

RESUMEN

Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors.


Asunto(s)
Ciclofilinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Unión Competitiva , Secuencia de Consenso , Humanos , Imidazoles/farmacología , Células MCF-7 , Modelos Moleculares , Datos de Secuencia Molecular , Piperazinas/farmacología , Unión Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...