Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Methods Mol Biol ; 2743: 111-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147211

RESUMEN

Immunofluorescent microscopy enables the examination of cellular expression and localization of proteins. Cellular localization can often impact protein function, as certain molecular interactions occur in specific cellular compartments. Here we describe in detail the processes necessary for identifying phosphatases in the cell through immunofluorescent microscopy. Identification of phosphatase expression and localization could lead to the discovery of protein function in disease states along with potential substrates and binding partners.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Microscopía Fluorescente
2.
Biomed Pharmacother ; 170: 116013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104416

RESUMEN

The Wnt/ß-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/ß-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/ß-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which rely on active ß-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/ß-catenin signaling.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Vía de Señalización Wnt , Animales , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Pez Cebra/metabolismo , beta Catenina/metabolismo , Evaluación Preclínica de Medicamentos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Linfocitos T/metabolismo
3.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693603

RESUMEN

The Wnt/ß-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential, yet clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex crosstalk with other pathways. In this study, we leveraged the zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/ß-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/ß-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which are known to rely on active ß-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing, and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/ß-catenin signaling. Highlights: Zebrafish-based drug screening offers an inexpensive and robust platform for identifying compounds with high efficacy and low toxicity in vivo . Erlotinib, an Epidermal Growth Factor Receptor (EGFR) inhibitor, emerged as a potent and promising Wnt inhibitor with effects in both zebrafish and human cell-based Wnt reporter assays.The identification of Erlotinib as a Wnt inhibitor underscores the value of repurposed drugs in developing targeted therapies to disrupt cancer stemness and improve clinical outcomes.

4.
ACS Omega ; 8(33): 30578-30589, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636930

RESUMEN

Phosphatase of regenerating liver 3 (PRL-3) is associated with cancer metastasis and has been shown to interact with the cyclin and CBS domain divalent metal cation transport mediator (CNNM) family of proteins to regulate the intracellular concentration of magnesium and other divalent metals. Despite PRL-3's importance in cancer, factors that regulate PRL-3's phosphatase activity and its interactions with CNNM proteins remain unknown. Here, we show that divalent metal ions, including magnesium, calcium, and manganese, have no impact on PRL-3's structure, stability, phosphatase activity, or CNNM binding capacity, indicating that PRL-3 does not act as a metal sensor, despite its interaction with CNNM metal transporters. In vitro approaches found that PRL-3 is a broad but not indiscriminate phosphatase, with activity toward di- and tri-nucleotides, phosphoinositols, and NADPH but not other common metabolites. Although calcium, magnesium, manganese, and zinc-binding sites were predicted near the PRL-3 active site, these divalent metals did not specifically alter PRL-3's phosphatase activity toward a generic substrate, its transition from an inactive phospho-cysteine intermediate state, or its direct binding with the CBS domain of CNNM. PRL-3's insensitivity to metal cations negates the possibility of its role as an intracellular metal content sensor for regulating CNNM activity. Further investigation is warranted to define the regulatory mechanisms governing PRL-3's phosphatase activity and CNNM interactions, as these findings could hold potential therapeutic implications in cancer treatment.

5.
Inorg Chem ; 62(28): 10940-10954, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37405779

RESUMEN

While cancer cells rely heavily upon glycolysis to meet their energetic needs, reducing the importance of mitochondrial oxidative respiration processes, more recent studies have shown that their mitochondria still play an active role in the bioenergetics of metastases. This feature, in combination with the regulatory role of mitochondria in cell death, has made this organelle an attractive anticancer target. Here, we report the synthesis and biological characterization of triarylphosphine-containing bipyridyl ruthenium (Ru(II)) compounds and found distinct differences as a function of the substituents on the bipyridine and phosphine ligands. 4,4'-Dimethylbipyridyl-substituted compound 3 exhibited especially high depolarizing capabilities, and this depolarization was selective for the mitochondrial membrane and occurred within minutes of treatment in cancer cells. The Ru(II) complex 3 exhibited an 8-fold increase in depolarized mitochondrial membranes, as determined by flow cytometry, which compares favorably to the 2-fold increase observed by carbonyl cyanide chlorophenylhydrazone (CCCP), a proton ionophore that shuttles protons across membranes, depositing them into the mitochondrial matrix. Fluorination of the triphenylphosphine ligand provided a scaffold that maintained potency against a range of cancer cells but avoided inducing toxicity in zebrafish embryos at higher concentrations, displaying the potential of these Ru(II) compounds for anticancer applications. This study provides essential information regarding the role of ancillary ligands for the anticancer activity of Ru(II) coordination compounds that induce mitochondrial dysfunction.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Animales , 2,2'-Dipiridil , Ligandos , Pez Cebra , Mitocondrias , Rutenio/farmacología , Rutenio/metabolismo
6.
RSC Chem Biol ; 4(5): 344-353, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181632

RESUMEN

Ruthenium complexes are often investigated as potential replacements for platinum-based chemotherapeutics in hopes of identifying systems with improved tolerability in vivo and reduced susceptibility to cellular resistance mechanisms. Inspired by phenanthriplatin, a non-traditional platinum agent that contains only one labile ligand, monofunctional ruthenium polypyridyl agents have been developed, but until now, few demonstrated promising anticancer activity. Here we introduce a potent new scaffold, based on [Ru(tpy)(dip)Cl]Cl (tpy = 2,2':6',2''-terpyridine and dip = 4,7-diphenyl-1,10-phenanthroline) in pursuit of effective Ru(ii)-based monofunctional agents. Notably, the extension of the terpyridine at the 4' position with an aromatic ring resulted in a molecule that was cytotoxic in several cancer cell lines with sub-micromolar IC50 values, induced ribosome biogenesis stress, and exhibited minimal zebrafish embryo toxicity. This study demonstrates the successful design of a Ru(ii) agent that mimics many of the biological effects and phenotypes seen with phenanthriplatin, despite numerous differences in both the ligands and metal center structure.

7.
PLoS One ; 18(5): e0285964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220097

RESUMEN

Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.


Asunto(s)
Anticuerpos , Neoplasias , Anticuerpos de Dominio Único , Animales , Ratones , Camélidos del Nuevo Mundo , Modelos Animales de Enfermedad
8.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768609

RESUMEN

The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.


Asunto(s)
Neoplasias , Pez Cebra , Humanos , Ratones , Animales , Pez Cebra/genética , Neoplasias/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Front Oncol ; 12: 958673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591474

RESUMEN

Background: Acute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, and patients with relapsed ALL have a poor prognosis. Detection of ALL blasts remaining at the end of treatment, or minimal residual disease (MRD), and spread of ALL into the central nervous system (CNS) have prognostic importance in ALL. Current methods to detect MRD and CNS disease in ALL rely on the presence of ALL blasts in patient samples. Cell-free DNA, or small fragments of DNA released by cancer cells into patient biofluids, has emerged as a robust and sensitive biomarker to assess cancer burden, although cfDNA analysis has not previously been applied to ALL. Methods: We present a simple and rapid workflow based on NanoporeMinION sequencing of PCR amplified B cell-specific rearrangement of the (IGH) locus in cfDNA from B-ALL patient samples. A cohort of 5 pediatric B-ALL patient samples was chosen for the study based on the MRD and CNS disease status. Results: Quantitation of IGH-variable sequences in cfDNA allowed us to detect clonal heterogeneity and track the response of individual B-ALL clones throughout treatment. cfDNA was detected in patient biofluids with clinical diagnoses of MRD and CNS disease, and leukemic clones could be detected even when diagnostic cell-count thresholds for MRD were not met. These data suggest that cfDNA assays may be useful in detecting the presence of ALL in the patient, even when blasts are not physically present in the biofluid sample. Conclusions: The Nanopore IGH detection workflow to monitor cell-free DNA is a simple, rapid, and inexpensive assay that may ultimately serve as a valuable complement to traditional clinical diagnostic approaches for ALL.

10.
Eur J Inorg Chem ; 2021(35): 3611-3621, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34539235

RESUMEN

The ß-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ2-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated. The complexes demonstrated promising structure-dependent cytotoxicity. Three complexes maintained high activity in a tumor spheroid model, and all complexes demonstrated low in vivo toxicity in a zebrafish model. From this series, the best compound exhibited a ~ 30-fold window between cytotoxicity in a 3-D tumor spheroid model and potential in vivo toxicity. These results suggest that κ2-O,O'-ligands can be incorporated into Ru(II)-polypyridyl complexes to create favorable candidates for future drug development.

11.
FEBS J ; 288(23): 6674-6676, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34327809

RESUMEN

Over 34 000 patients are diagnosed yearly with multiple myeloma (MM), which remains a fatal malignancy. Expression of the phosphatase PRL-3 is associated with poor prognosis in MM patients, and Vandsemb et al. have demonstrated that PRL-3 contributes to enhanced MM cell fitness through activation of a glycolysis-associated feedback loop. PRL-3 resulted in increased expression of signal transducer and activator of transcription 1 (STAT1) and 2 (STAT2) and increased glycolysis. Increased glucose metabolism in turn activated STAT1/2 and interferon 1-related genes. This discovery advances the MM field by providing a new potential treatment avenue. Comment on: https://doi.org/10.1111/febs.16058.


Asunto(s)
Mieloma Múltiple , Retroalimentación , Expresión Génica , Glucólisis , Humanos , Mieloma Múltiple/genética , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
12.
Sci Rep ; 11(1): 10302, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986418

RESUMEN

Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells with no impact on cell viability. Both drugs prevented migration of human colorectal cancer cells in a PRL-3 dependent manner and were selective towards PRLs over other phosphatases. In silico modeling revealed that Salirasib binds a putative allosteric site near the WPD loop of PRL-3, while Candesartan binds a potentially novel targetable site adjacent to the CX5R motif. Inhibitor binding at either of these sites is predicted to trap PRL-3 in a closed conformation, preventing substrate binding and inhibiting function.


Asunto(s)
Aprobación de Drogas/legislación & jurisprudencia , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Línea Celular Tumoral , Células HEK293 , Humanos , Estados Unidos , United States Food and Drug Administration
13.
STAR Protoc ; 2(2): 100433, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33889852

RESUMEN

Dysregulation of Wnt signaling is a hallmark of many cancers, and the development of effective, non-toxic small-molecule Wnt inhibitors is desirable. Off-target toxicities of new compounds are typically tested in mouse models, which is both costly and time consuming. Here, we present a rapid and inexpensive protocol to determine the in vivo toxicity and efficacy of novel Wnt inhibitors in zebrafish using a combination of a fluorescence reporter assay as well as eye rescue and fin regeneration assays. These experiments are completed within 1 week to rapidly narrow drug candidates before moving to more expensive pre-clinical testing. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2020).


Asunto(s)
Antineoplásicos , Evaluación Preclínica de Medicamentos/métodos , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Femenino , Masculino , Neoplasias Experimentales/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra
14.
iScience ; 23(12): 101795, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33305174

RESUMEN

Aberrant activation of Wnt signaling triggered by mutations in either Adenomatous Polyposis Coli (APC) or CTNNB1 (ß-catenin) is a hallmark of colorectal cancers (CRC). As part of a program to develop epigenetic regulators for cancer therapy, we developed carboxamide-substituted benzhydryl amines (CBAs) bearing either aryl or heteroaryl groups that selectively targeted histone lysine demethylases (KDMs) and functioned as inhibitors of the Wnt pathway. A biotinylated variant of N-((5-chloro-8-hydroxyquinolin-7-yl) (4-(diethylamino)phenyl)-methyl)butyramide (CBA-1) identified KDM3A as a binding partner. KDM3A is a Jumonji (JmjC) domain-containing demethylase that is significantly upregulated in CRC. KDM3A regulates the demethylation of histone H3's lysine 9 (H3K9Me2), a repressive marker for transcription. Inhibiting KDM3 increased H3K9Me2 levels, repressed Wnt target genes, and curtailed in vitro CRC cell proliferation. CBA-1 also exhibited in vivo inhibition of Wnt signaling in a zebrafish model without displaying in vivo toxicity.

15.
Dalton Trans ; 49(35): 12161-12167, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845256

RESUMEN

Four structurally distinct classes of polypyridyl ruthenium complexes containing avobenzone exhibited low micromolar and submicromolar potencies in cancer cells, and were up to 273-fold more active than the parent ligand. Visible light irradiation enhanced the cytotoxicity of some complexes, making them promising candidates for combined chemo-photodynamic therapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Propiofenonas/química , Rutenio/química , Línea Celular Tumoral , Humanos , Ligandos , Fotoquimioterapia , Relación Estructura-Actividad
16.
J Vis Exp ; (158)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338651

RESUMEN

Patient derived xenograft models are critical in defining how different cancers respond to drug treatment in an in vivo system. Mouse models are the standard in the field, but zebrafish have emerged as an alternative model with several advantages, including the ability for high-throughput and low-cost drug screening. Zebrafish also allow for in vivo drug screening with large replicate numbers that were previously only obtainable with in vitro systems. The ability to rapidly perform large scale drug screens may open up the possibility for personalized medicine with rapid translation of results back to clinic. Zebrafish xenograft models could also be used to rapidly screen for actionable mutations based on tumor response to targeted therapies or to identify new anti-cancer compounds from large libraries. The current major limitation in the field has been quantifying and automating the process so that drug screens can be done on a larger scale and be less labor-intensive. We have developed a workflow for xenografting primary patient samples into zebrafish larvae and performing large scale drug screens using a fluorescence microscope equipped imaging unit and automated sampler unit. This method allows for standardization and quantification of engrafted tumor area and response to drug treatment across large numbers of zebrafish larvae. Overall, this method is advantageous over traditional cell culture drug screening as it allows for growth of tumor cells in an in vivo environment throughout drug treatment, and is more practical and cost-effective than mice for large scale in vivo drug screens.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Trasplante Heterólogo , Pez Cebra
17.
Pharmacol Ther ; 190: 128-138, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859177

RESUMEN

The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Progresión de la Enfermedad , Desarrollo de Medicamentos/métodos , Humanos , Terapia Molecular Dirigida , Estadificación de Neoplasias , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores
18.
Cancer Discov ; 7(11): 1336-1353, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28974511

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection-associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. Impaired NHEJ is well known to cause genomic instability, including development of T-cell malignancies in KU70- and KU80-deficient mice. Collectively, our work has uncovered important roles for TOX in regulating NHEJ by elevating genomic instability during leukemia initiation and sustaining leukemic cell proliferation following transformation.Significance: TOX is an HMG box-containing protein that has important roles in T-ALL initiation and maintenance. TOX inhibits the recruitment of KU70/KU80 to DNA breaks, thereby inhibiting NHEJ repair. Thus, TOX is likely a dominant oncogenic driver in a large fraction of human T-ALL and enhances genomic instability. Cancer Discov; 7(11); 1336-53. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Inestabilidad Genómica/genética , Proteínas HMGB/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Proliferación Celular/genética , Humanos , Autoantígeno Ku/genética , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Linfocitos T/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/genética
19.
J Exp Med ; 213(6): 979-92, 2016 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-27139488

RESUMEN

Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia.


Asunto(s)
Hematopoyesis/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Neoplásicas/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Transcripción Genética/inmunología , Pez Cebra/inmunología , Sustitución de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Mutación Missense , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Linfocitos T/inmunología , Linfocitos T/patología , Transcripción Genética/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
20.
Nat Commun ; 7: 10358, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26790525

RESUMEN

Cancers contain a wide diversity of cell types that are defined by differentiation states, genetic mutations and altered epigenetic programmes that impart functional diversity to individual cells. Elevated tumour cell heterogeneity is linked with progression, therapy resistance and relapse. Yet, imaging of tumour cell heterogeneity and the hallmarks of cancer has been a technical and biological challenge. Here we develop optically clear immune-compromised rag2(E450fs) (casper) zebrafish for optimized cell transplantation and direct visualization of fluorescently labelled cancer cells at single-cell resolution. Tumour engraftment permits dynamic imaging of neovascularization, niche partitioning of tumour-propagating cells in embryonal rhabdomyosarcoma, emergence of clonal dominance in T-cell acute lymphoblastic leukaemia and tumour evolution resulting in elevated growth and metastasis in BRAF(V600E)-driven melanoma. Cell transplantation approaches using optically clear immune-compromised zebrafish provide unique opportunities to uncover biology underlying cancer and to dynamically visualize cancer processes at single-cell resolution in vivo.


Asunto(s)
Rastreo Celular/métodos , Melanoma/química , Melanoma/inmunología , Animales , Rastreo Celular/instrumentación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Huésped Inmunocomprometido , Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia , Trasplante de Neoplasias , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...