Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Mol Bioeng ; 16(4): 309-324, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37810997

RESUMEN

Introduction: Valvular heart disease represents a significant burden to the healthcare system, with approximately 5 million cases diagnosed annually in the US. Among these cases, calcific aortic stenosis (CAS) stands out as the most prevalent form of valvular heart disease in the aging population.  CAS is characterized by the progressive calcification of the aortic valve leaflets, leading to valve stiffening. While aortic valve replacement is the standard of care for CAS patients, the long-term durability of prosthetic devices is poor, calling for innovative strategies to halt  or reverse disease progression. Here, we explor the potential use of novel extracellular vesicle (EV)-based nanocarriers for delivering molecular payloads to the affected valve tissue. This approach aims to reduce inflammation and potentially promote resorption of the calcified tissue. Methods: Engineered EVs loaded with the reprogramming myeloid transcription factors, CEBPA and Spi1, known to mediate the transdifferentiation of committed endothelial cells into macrophages. We evaluated the ability of these engineered EVs to deliver DNA and transcripts encoding CEBPA and Spil into calcified aortic valve tissue obtained from patients undergoing valve replacement due to aortic stenosis. We also investigated whether these EVs could induce the transdifferentiation of endothelial cells into macrophage-like cells. Results: Engineered EVs loaded with CEBPA + Spi1 were successfully derived from human dermal fibroblasts. Peak EV loading was found to be at 4 h after nanotransfection of donor cells.  These CEBPA + Spi1 loaded EVs effectively transfected aortic valve cells, resulting in the successful induction of transdifferentiation, both in vitro with  endothelial cells and ex vivo with valvular endothelial cells, leading to the development of anti-inflammatory macrophage-like cells. Conclusions: Our findings highlight the potential of engineered EVs as a next generation nanocarrier to target aberrant calcifications on diseased heart valves. This development holds promise as a novel therapy for high-risk patients who may not be suitable candidates for valve replacement surgery. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00783-x.

2.
Adv Ther (Weinh) ; 6(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37577183

RESUMEN

Vasculogenic cell therapies have emerged as a powerful tool to increase vascularization and promote tissue repair/regeneration. Current approaches to cell therapies, however, rely mostly on progenitor cells, which pose significant risks (e.g., uncontrolled differentiation, tumorigenesis, and genetic/epigenetic abnormalities). Moreover, reprogramming methodologies used to generate induced endothelial cells (iECs) from induced pluripotent stem cells rely heavily on viral vectors, which pose additional translational limitations. This work describes the development of engineered human extracellular vesicles (EVs) capable of driving reprogramming-based vasculogenic therapies without the need for progenitor cells and/or viral vectors. The EVs were derived from primary human dermal fibroblasts (HDFs), and were engineered to pack transcription factor genes/transcripts of ETV2, FLI1, and FOXC2 (EFF). Our results indicate that in addition of EFF, the engineered EVs were also loaded with transcripts of angiogenic factors (e.g., VEGF-A, VEGF-KDR, FGF2). In vitro and in vivo studies indicate that such EVs effectively transfected HDFs and drove direct conversions towards iECs within 7-14 days. Finally, wound healing studies in mice indicate that engineered EVs lead to improved wound closure and vascularity. Altogether, our results show the potential of engineered human vasculogenic EVs to drive direct reprogramming processes of somatic cells towards iECs, and facilitate tissue repair/regeneration.

3.
Bioengineering (Basel) ; 10(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37508888

RESUMEN

Rete ridges play multiple important roles in native skin tissue function, including enhancing skin strength, but they are largely absent from engineered tissue models and skin substitutes. Laser micropatterning of fibroblast-containing dermal templates prior to seeding of keratinocytes was shown to facilitate rete ridge development in engineered skin (ES) both in vitro and in vivo. However, it is unknown whether rete ridge development results exclusively from the microarchitectural features formed by ablative processing or whether laser treatment causes an inflammatory response that contributes to rete ridge formation. In this study, laser-micropatterned and non-laser- treated ES grafts were developed and assessed during culture and for four weeks post grafting onto full-thickness wounds in immunodeficient mice. Decreases in inflammatory cytokine secretion were initially observed in vitro in laser-treated grafts compared to non-treated controls, although cytokine levels were similar in both groups five days after laser treatment. Post grafting, rete ridge-containing ES showed a significant increase in vascularization at week 2, and in collagen deposition and biomechanics at weeks 2 and 4, compared with controls. No differences in inflammatory cytokine expression after grafting were observed between groups. The results suggest that laser micropatterning of ES to create rete ridges improves the mechanical properties of healed skin grafts without increasing inflammation.

4.
PLoS One ; 17(12): e0279519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584151

RESUMEN

Segmental bone defects present complex clinical challenges. Nonunion, malunion, and infection are common sequalae of autogenous bone grafts, allografts, and synthetic bone implants due to poor incorporation with the patient's bone. The current project explores the osteogenic properties of periosteum to facilitate graft incorporation. As tissue area is a natural limitation of autografting, mechanical strain was implemented to expand the periosteum. Freshly harvested, porcine periosteum was strained at 5 and 10% per day for 10 days with non-strained and free-floating samples serving as controls. Total tissue size, viability and histologic examination revealed that strain increased area to a maximum of 1.6-fold in the 10% daily strain. No change in tissue anatomy or viability via MTT or Ki67 staining and quantification was observed among groups. The osteogenic potential of the mechanical expanded periosteum was then examined in vivo. Human cancellous allografts were wrapped with 10% per day strained, fresh, free-floating, or no porcine periosteum and implanted subcutaneously into female, athymic mice. Tissue was collected at 8- and 16-weeks. Gene expression analysis revealed a significant increase in alkaline phosphatase and osteocalcin in the fresh periosteum group at 8-weeks post implantation compared to all other groups. Values among all groups were similar at week 16. Additionally, histological assessment with H&E and Masson-Goldner Trichrome staining showed that all periosteal groups outperformed the non-periosteal allograft, with fresh periosteum demonstrating the highest levels of new tissue mineralization at the periosteum-bone interface. Overall, mechanical expansion of the periosteum can provide increased area for segmental healing via autograft strategies, though further studies are needed to explore culture methodology to optimize osteogenic potential.


Asunto(s)
Osteogénesis , Periostio , Ratones , Femenino , Humanos , Animales , Porcinos , Periostio/cirugía , Trasplante Homólogo , Trasplante Autólogo , Trasplante Óseo/métodos
5.
PLoS One ; 17(2): e0263083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113915

RESUMEN

In order to advance models of human oral mucosa towards routine use, these models must faithfully mimic the native tissue structure while also being scalable and cost efficient. The goal of this study was to develop a low-cost, keratinized human gingival model with high fidelity to human attached gingiva and demonstrate its utility for studying the implant-tissue interface. Primary human gingival fibroblasts (HGF) and keratinocytes (HGK) were isolated from clinically healthy gingival biopsies. Four matrices, electrospun collagen (ES), decellularized dermis (DD), type I collagen gels (Gel) and released type I collagen gels (Gel-R)) were tested to engineer lamina propria and gingiva. HGF viability was similar in all matrices except for Gel-R, which was significantly decreased. Cell penetration was largely limited to the top layers of all matrices. Histomorphometrically, engineered human gingiva was found to have similar appearance to the native normal human gingiva except absence of rete pegs. Immunohistochemical staining for cell phenotype, differentiation and extracellular matrix composition and organization within 3D engineered gingiva made with electrospun collagen was mostly in agreement with normal gingival tissue staining. Additionally, five types of dental material posts (5-mm diameter x 3-mm height) with different surface characteristics were used [machined titanium, SLA (sandblasted-acid etched) titanium, TiN-coated (titanium nitride-coated) titanium, ceramic, and PEEK (Polyetheretherketone) to investigate peri-implant soft tissue attachment studied by histology and SEM. Engineered epithelial and stromal tissue migration to the implant-gingival tissue interface was observed in machined, SLA, ceramic, and PEEK groups, while TiN was lacking attachment. Taken together, the results suggest that electrospun collagen scaffolds provide a scalable, reproducible and cost-effective lamina propria and 3D engineered gingiva that can be used to explore biomaterial-soft tissue interface.


Asunto(s)
Adhesión Celular , Colágeno/química , Implantes Dentales/estadística & datos numéricos , Fibroblastos/fisiología , Encía/fisiología , Queratinocitos/fisiología , Titanio/química , Fibroblastos/citología , Encía/citología , Humanos , Queratinocitos/citología , Ensayo de Materiales , Propiedades de Superficie
6.
Bioengineering (Basel) ; 8(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803598

RESUMEN

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.

7.
Burns ; 47(2): 466-478, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32839037

RESUMEN

INTRODUCTION: Determining the efficacy of anti-scar technologies can be difficult as qualitative, subjective assessments are often utilized instead of systematic, objective measures. Perceptions regarding the reliability of instruments for quantitative measurements along with their high cost and increased data collection time may discourage their use, leading to use of scar scales which are relatively quick and low-cost. To directly evaluate the reliability of instruments for quantitative measurements of scar properties, instruments and two qualitative scales were compared by assessing a variety of cutaneous scars. METHODS: Scar height and surface texture were evaluated using a 3D scanner and a mold/cast technique. Scar color was evaluated by using a spectroscopy-based tool, the Mexameter®, and digital photography with image analysis. Scar biomechanics were evaluated using the BTC-2000™, Dermal Torque Meter (DTM®), and ballistometer®. The Vancouver Scar Scale (VSS) and Patient and Observer Scar Assessment Scale (POSAS) were used to qualitatively evaluate the same scar properties. Intraclass correlation coefficients (ICC) were used to determine inter- and intra-user reliability (poor, moderate, good, excellent) with all instruments and the kappa reliability statistic was used to asses inter-user reliability (poor, fair, moderate, good, very good) for VSS and POSAS. Time for measurement collection and after collection analysis was also recorded. RESULTS: The Mexameter® was the most reliable method for evaluating erythema and pigmentation compared to digital photography and image processing, POSAS and VSS. Digital photography and analysis was more reliable than POSAS and VSS. Assessment of scar height was significantly more reliable when using a 3D scanner versus VSS and POSAS. The 3D scanner and mold-cast techniques also offered an additional benefit of providing an absolute value of scar height relative to the surrounding tissue. Intra-user reliability for all mechanical tests was moderate to good. Inter-user reliability was greater when using the BTC-2000™ and ballistometer® versus the DTM®. All quantitative measurements took less than 90 s for collection, with the exception of the mold/cast technique. CONCLUSION: Non-invasive instruments allow scar properties to be quantitatively assessed with high sensitivity and as a function of time and/or treatment without the need for biopsy collection. Overall, the reliability of scar assessments was significantly improved when quantitative instruments were utilized versus scar scales. Quantitative assessment of color and biomechanics were swift, requiring less than 90 s per measurement while assessments of texture and height required additional analysis time after collection. With proper training of clinical staff and well-defined protocols for measurement collection, reliable, quantitative assessments of scar properties can be collected with little disruption to the clinical workflow.


Asunto(s)
Quemaduras , Cicatriz , Quemaduras/complicaciones , Cicatriz/etiología , Cicatriz/patología , Humanos , Fotograbar , Pigmentación , Reproducibilidad de los Resultados
8.
Methods Mol Biol ; 2193: 129-140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32808265

RESUMEN

Cardiovascular diseases (CVDs) are one of the leading causes of mortality worldwide and a number one killer in the USA. Cell-based approaches to treat CVDs have only shown modest improvement due to poor survival, retention, and engraftment of the transplanted cells in the ischemic myocardium. Recently, tissue engineering and the use of 3D scaffolds for culturing and delivering stem cells for ischemic heart disease are gaining rapid potential. Here, we describe a protocol for the fabrication of aligned coaxial nanofibrous scaffold comprising of a polycaprolactone (PCL) core and gelatin shell. Furthermore, we describe a detailed protocol for the efficient seeding and maintenance of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on these nanofibrous scaffolds, which could have a potential application in the generation of functional "cardiac patch" for myocardial repair applications as well as an in vitro 3D cardiac tissue model to evaluate the efficacy of cardiovascular drugs and cardiac toxicities.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes Inducidas/trasplante , Nanofibras/química , Ingeniería de Tejidos/métodos , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Células Cultivadas , Gelatina/química , Humanos , Ratones , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/trasplante , Poliésteres/química , Andamios del Tejido/química , Remodelación Ventricular/genética
9.
Mater Sci Eng C Mater Biol Appl ; 118: 111354, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254974

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) derived cardiomyocytes (hiPSC-CMs) have been explored for cardiac regeneration and repair as well as for the development of in vitro 3D cardiac tissue models. Existing protocols for cardiac differentiation of hiPSCs utilize a 2D culture system. However, the efficiency of hiPSC differentiation to cardiomyocytes in 3D culture systems has not been extensively explored. In the present study, we investigated the efficiency of cardiac differentiation of hiPSCs to functional cardiomyocytes on 3D nanofibrous scaffolds. Coaxial polycaprolactone (PCL)-gelatin fibrous scaffolds were fabricated by electrospinning and characterized using scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. hiPSCs were cultured and differentiated into functional cardiomyocytes on the nanofibrous scaffold and compared with 2D cultures. To assess the relative efficiencies of both the systems, SEM, immunofluorescence staining and gene expression analyses were performed. Contractions of differentiated cardiomyocytes were observed in 2D cultures after 2 weeks and in 3D cultures after 4 weeks. SEM analysis showed no significant differences in the morphology of cells differentiated on 2D versus 3D cultures. However, gene expression data showed significantly increased expression of cardiac progenitor genes (ISL-1, SIRPA) in 3D cultures and cardiomyocytes markers (TNNT, MHC6) in 2D cultures. In contrast, immunofluorescence staining showed no substantial differences in the expression of NKX-2.5 and α-sarcomeric actinin. Furthermore, uniform migration and distribution of the in situ differentiated cardiomyocytes was observed in the 3D fibrous scaffold. Overall, our study demonstrates that coaxial PCL-gelatin nanofibrous scaffolds can be used as a 3D culture platform for efficient differentiation of hiPSCs to functional cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanofibras , Diferenciación Celular , Gelatina , Humanos , Miocitos Cardíacos , Ingeniería de Tejidos , Andamios del Tejido
10.
Tissue Eng Part A ; 26(21-22): 1138-1146, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32486917

RESUMEN

For patients with large, full-thickness burn wounds, sufficient donor sites for autografting are not available, and thus, alternate strategies must be used to close these wounds. Cultured epithelial autografts (CEAs) can aid in closing these wounds but are often associated with slow deposition of basement membrane proteins, leading to blistering and graft loss. Rete ridges and dermal papillae present at the dermal-epidermal junction (DEJ) play a key role in epidermal adhesion and skin homeostasis. Promoting the development of an interdigitated DEJ may enhance basement membrane protein deposition and provide enhanced physical interlock of the epidermis and dermis. To develop a dermal template with stable dermal papillae, an electrospun collagen scaffold was seeded with human dermal fibroblasts. Ridged topographies were patterned into the cell-seeded dermal template using laser ablation, creating wide and shallow (ActiveFX) or narrow and deep (DeepFX) wells. Micropatterned or flat (control) dermal templates were combined with CEAs immediately before grafting to full-thickness excisional wounds on immunodeficient mice. CEAs grafted in conjunction with ridged templates showed rete ridge formation at 2 weeks after grafting and led to increased epidermal thickness, proliferation, and stemness compared to templates with a flat DEJ. As this technology is further developed, the dermal papilla-containing dermal templates may be utilized in combination with CEAs to improve adhesion and clinical function. Impact statement Cultured epithelial autografts (CEAs) serve as an adjunct to conventional split-thickness autograft in patients with very large burns, but they are susceptible to blistering that can reduce engraftment. Blistering results, in part, from relatively slow basement membrane deposition after grafting. This study demonstrates that basement membrane deposition and rete ridge formation are enhanced by combination of CEAs with a micropatterned, cell-seeded dermal template. These findings may lead to improved treatment and increased survival in patients with very large burns.


Asunto(s)
Quemaduras , Epitelio/trasplante , Trasplante de Piel , Andamios del Tejido , Animales , Autoinjertos , Quemaduras/cirugía , Células Cultivadas , Colágeno , Epidermis , Fibroblastos , Humanos , Ratones
11.
Adv Wound Care (New Rochelle) ; 9(8): 453-461, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32320361

RESUMEN

Objective: Despite the development of a number of treatment modalities, scarring remains common postburn injury. To reduce burn scarring, pressure garment therapy has been widely utilized but is complicated by low patient adherence. To improve adherence, reduced hours of daily garment wear has been proposed. Approach: To examine the efficacy of pressure garment therapy at reduced durations of daily wear, a porcine burn-excise-autograft model was utilized. Grafted burns were treated with pressure garments (20 mmHg) for 8, 16, or 24 h of daily wear with untreated burns serving as controls. Scar area, thickness, biomechanical properties, and tissue structure were assessed over time. Results: All treatment groups reduced scar thickness and contraction versus controls and improved scar pliability and elasticity. Pressure garments worn 24 h per day significantly reduced contraction versus the 8- and 16-h groups and prevented alignment of collagen within the dermis. Innovation: Though pressure garment therapy is prescribed for use 23 h per day, the need for almost continuous use has not been previously examined. Adjustable, low-fatigue pressure garments were developed for this porcine study to examine the role of daily duration of wear without confounding factors such as garment fatigue and patient adherence. Conclusion: For maximum efficacy, pressure garments should be worn 23 to 24 h per day; however, garments worn as little as 8 h per day significantly improve scar outcomes versus no treatment.


Asunto(s)
Quemaduras/complicaciones , Quemaduras/terapia , Cicatriz Hipertrófica/etiología , Cicatriz Hipertrófica/terapia , Vestuario , Vendajes de Compresión , Animales , Autoinjertos , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Cooperación del Paciente , Porcinos , Trasplante Autólogo , Resultado del Tratamiento
12.
Adv Wound Care (New Rochelle) ; 9(3): 79-89, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993250

RESUMEN

Objective: Exposure to ultraviolet (UV) light from the sun is known to accelerate the skin aging process and leads to significant alterations in skin biomechanics; however, the molecular mechanisms by which chronic UVB affects biomechanical properties of the skin have not been well described. Approach: A murine model for chronic UVB exposure was used to examine changes in epidermal barrier function, skin biomechanics, and miRNA expression as a result of UVB. Results: UVB irradiation caused skin to be weaker, less elastic, stiffer, and less pliable. Notably, these changes were not reversed after a 5-week period of recovery. Following UVB exposure, dermal collagen fibrils were significantly smaller in diameter and expression of the miR-34 family was significantly increased. Innovation: To our knowledge, this is the first study to concurrently examine alterations in skin function, miRNA expression, and tissue biomechanics in response to chronic UVB exposure. Conclusion: The data suggest that UVB alters miR-34 family expression in skin, in addition to dysregulating collagen structure with subsequent reductions in strength and elasticity. miRNAs may play a pivotal role in regulating extracellular matrix deposition and skin biomechanics following chronic UVB exposure, and thus may be a possible target for therapeutic development. However, additional studies are needed to directly probe the link between UVB exposure, miRNA production, and skin biomechanics.


Asunto(s)
Dermis/metabolismo , Elasticidad/efectos de la radiación , Epidermis/metabolismo , MicroARNs/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Dermis/efectos de la radiación , Epidermis/efectos de la radiación , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Femenino , Ratones , Ratones Pelados
13.
Ann Surg ; 271(6): 1174-1185, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-30614873

RESUMEN

OBJECTIVE: The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND: Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS: Isogenic mutant strains of S. aureus with varying degree (ΔrexB > USA300 > ΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS: Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION: This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.


Asunto(s)
Biopelículas , Colágeno/metabolismo , Tejido de Granulación/metabolismo , Staphylococcus aureus/aislamiento & purificación , Cicatrización de Heridas/fisiología , Infección de Heridas/microbiología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Tejido de Granulación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología , Porcinos , Infección de Heridas/diagnóstico
14.
Acta Biomater ; 102: 287-297, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805407

RESUMEN

Rete ridges are interdigitations of the epidermis and dermis of the skin that play multiple roles in homeostasis, including enhancing adhesion via increased contact area and acting as niches for epidermal stem cells. These structures, however, are generally absent from engineered skin (ES). To develop ES with rete ridges, human fibroblast-seeded dermal templates were treated with a fractional CO2 laser, creating consistently spaced wells at the surface. Constructs with and without laser treatment were seeded with keratinocytes, cultured for 10 days, and grafted onto athymic mice for four weeks. Rete-ridge like structures were observed in the laser-patterned (ridged) samples at the time of grafting and were maintained in vivo. Ridged grafts displayed improved barrier function over non-lasered (flat) grafts at the time of grafting and 4 weeks post-grafting. Presence of ridges in vivo corresponded with increased keratinocyte proliferation, epidermal area, and basement membrane length. These results suggest that this method can be utilized to develop engineered skin grafts with rete ridges, that the ridge pattern is stable for at least 4 weeks post-grafting, and that the presence of these ridges enhances epidermal proliferation and establishment of barrier function. STATEMENT OF SIGNIFICANCE: Rete ridges play a role in epidermal homeostasis, enhance epidermal-dermal adhesion and act as niches for epidermal stem cells. Despite their role in skin function, these structures are not directly engineered into synthetic skin. A new method to rapidly and reproducibly generate rete ridges in engineered skin was developed using fractional CO2 laser ablation. The resulting engineered rete ridges aided in the establishment of epidermal barrier function, basement membrane protein deposition and epidermal regeneration. This new model of engineered skin with rete ridges could be utilized as an in vitro system to study epidermal stem cells, a testbed for pharmaceutical evaluation or translated for clinical use in full-thickness wound repair.


Asunto(s)
Colágeno/química , Piel/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Adulto , Animales , Dióxido de Carbono , Femenino , Fibroblastos/metabolismo , Expresión Génica/fisiología , Humanos , Rayos Láser , Ratones , Piel/citología , Trasplante de Piel , Ingeniería de Tejidos/instrumentación
15.
Burns ; 46(4): 937-948, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31767253

RESUMEN

INTRODUCTION: Fractional CO2 lasers have been used in clinical settings to improve scarring following burn injury. Though used with increasing frequency, the appropriate laser settings are not well defined and overall efficacy of this therapy has not been definitively established. As it has been proposed that for thick hypertrophic scars proportionally greater fluence and thus deeper ablation into the scar tissue would be most effective, the goal of this study was to examine the role of ablation depth on scar outcomes in a highly-controlled porcine model for burn scars-after grafting. METHODS: Properties of laser ablated wells were quantified on ex vivo pig skin as a function of laser energy (20, 70 or 150mJ). Full-thickness burn wounds were created on the dorsum of red Duroc pigs with the eschar excised and grafted with a split-thickness autograft meshed and expanded 1.5:1. After four weeks of healing, sites were treated with either 20, 70, or 150mJ pulse energy from a fractional CO2 laser at 5% density or left untreated as a control. Sites were treated every four weeks with three total sessions. Scar area, pigmentation, erythema, roughness, histology, and biomechanics were evaluated prior to each laser treatment at day 28, 56, and 83, as well as four weeks after the final laser treatment, day 112. Additional biopsies were collected at day 112 for gene expression analysis. RESULTS: The depth of the laser ablated wells increased with increasing pulse energy while the width of the wells was smaller in the 20mJ group and not significantly different in the 70 and 150mJ groups. Scar properties (area, color, biomechanics) were not significantly altered by laser therapy at any of the laser energies tested versus controls. Average scar roughness was improved by laser therapy in a dose dependent manner with scars treated with 150mJ of energy having the smoothest surface; however, these changes were not statistically significant. Assessment of matrix metalloproteinase 9 gene expression showed a slight upregulation in scars treated with 70 or 150mJ versus control scars and scars treated with 20mJ pulse energy. CONCLUSION: The current study demonstrated that the properties of the ablative well (depth and width) are not linearly correlated with laser pulse energy, with only a small increase in well depth at energies between 70 and 150mJ. Overall, the study suggests that there is little difference in outcomes as a function of laser energy. Fractional CO2 laser therapy did not result in any statistically significant benefit to scar properties assessed by quantitative, objective measures, thus highlighting the need for additional clinical investigation of laser therapy efficacy with non-treated controls and objective measures of outcome.


Asunto(s)
Quemaduras/cirugía , Cicatriz/cirugía , Terapia por Láser/métodos , Láseres de Gas/uso terapéutico , Piel/patología , Animales , Fenómenos Biomecánicos , Cicatriz/genética , Cicatriz/patología , Cicatriz/fisiopatología , Eritema , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Pigmentación , ARN Mensajero/metabolismo , Piel/fisiopatología , Trasplante de Piel , Sus scrofa , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-2/genética
16.
Plast Reconstr Surg ; 143(2): 310e-321e, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30688890

RESUMEN

BACKGROUND: Pressure garment therapy, used for reduction of postburn scarring, is commonly initiated after complete healing of the wound or autograft. Although some clinicians have suggested that earlier treatment may improve outcomes, the effect of early initiation of therapy has not been studied in a controlled environment. METHODS: Full-thickness burns were created on red Duroc pigs, burn eschar was excised, and the wound bed was grafted with split-thickness autografts. Grafts were treated with pressure garments immediately, 1 week (early), or 5 weeks (delayed) after grafting with nontreated grafts as controls. Scar morphology, biomechanics, and gene expression were measured at multiple time points up to 17 weeks after grafting. RESULTS: Grafts that received pressure within 1 week after grafting exhibited no reduction in engraftment rates. Immediate and early application of pressure resulted in scars with decreased contraction, reduced scar thickness, and improved biomechanics compared with controls. Pressure garment therapy did not alter expression of collagen I, collagen III, or transforming growth factor ß1 at the time points investigated; however, expression of matrix metalloproteinase 1 was significantly elevated in the immediate pressure garment therapy group at week 3, whereas the delayed pressure garment therapy and control groups approached baseline levels at this time point. CONCLUSIONS: Early application of pressure garments is safe and effective for reducing scar thickness and contraction and improving biomechanics. This preclinical study suggests that garments should be applied as soon as possible after grafting to achieve greatest benefit, although clinical studies are needed to validate the findings in humans.


Asunto(s)
Quemaduras/terapia , Cicatriz/prevención & control , Vendajes de Compresión , Trasplante de Piel/métodos , Cicatrización de Heridas/fisiología , Animales , Fenómenos Biomecánicos , Biopsia con Aguja , Quemaduras/patología , Cicatriz/patología , Terapia Combinada , Modelos Animales de Enfermedad , Inmunohistoquímica , Puntaje de Gravedad del Traumatismo , Cuidados Posoperatorios/métodos , Distribución Aleatoria , Porcinos , Factores de Tiempo , Trasplante Autólogo/métodos
17.
Acta Biomater ; 80: 247-257, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30218778

RESUMEN

Engineered skin (ES) offers many advantages over split-thickness skin autografts for the treatment of burn wounds. However, ES, both in vitro and after grafting, is often significantly weaker, less elastic and more compliant than normal human skin. Biomechanical properties of ES can be tuned in vitro using electrospun co-axial (CoA) scaffolds. To explore the potential for coaxial scaffold-based ES use in vivo, two CoA scaffolds were fabricated with bioactive gelatin shells and biodegradable synthetic cores of polylactic acid (PLA) and polycaprolactone (PCL), and compared with gelatin monofilament scaffolds. Fibroblast and macrophage production of inflammatory cytokines interleukin 6 (IL-6) and transforming growth factor ß-1 was significantly higher when cultured on PLA and PCL monofilament scaffolds compared to gelatin monofilament scaffolds. The core-shell fiber configuration significantly reduced production of pro-inflammatory cytokines to levels similar to those of gelatin monofilament scaffolds. In vitro, ES mechanical properties were significantly enhanced using CoA scaffolds; however, after grafting CoA- and gelatin-based ES to full-thickness excisional wounds on athymic mice, the in vitro mechanical advantage of CoA grafts was lost. A substantially increased inflammatory response to CoA-based ES was observed, with upregulation of IL-6 expression and a significant M2 macrophage presence. Additionally, expression of matrix metalloproteinase I was upregulated and collagen type I alpha 1 was downregulated in CoA ES two weeks after grafting. These results suggest that while coaxial scaffolds provide the ability to regulate biomechanics in vitro, further investigation of the inflammatory response to core materials is required to optimize this strategy for clinical use. STATEMENT OF SIGNIFICANCE: Engineered skin has been used to treat very large burn injuries. Despite its ability to heal these wounds, engineered skin exhibits reduced biomechanical properties making it challenging to manufacture and surgically apply. Coaxial fiber scaffolds have been utilized to tune the mechanical properties of engineered skin while maintaining optimal biological properties but it is not known how these perform on a patient especially with regards to their inflammatory response. The current study examines the biomechanical and inflammatory properties of coaxial scaffolds and uniaxial scaffolds in vitro and in vivo. The results show that the biological response to the scaffold materials is a critical determinant of tissue properties after grafting with reduced inflammation and rapid scaffold remodeling leading to stronger skin.


Asunto(s)
Inflamación/patología , Trasplante de Piel , Piel Artificial , Piel/patología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Fenómenos Biomecánicos , Cadena alfa 1 del Colágeno Tipo I , Citocinas/metabolismo , Módulo de Elasticidad , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones Desnudos , Poliésteres/química , Estrés Mecánico , Resistencia a la Tracción
18.
J Burn Care Res ; 39(4): 562-571, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29901806

RESUMEN

Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.


Asunto(s)
Quemaduras/terapia , Cicatriz/prevención & control , Vestuario , Lavandería , Niño , Diseño de Equipo , Humanos , Maniquíes , Ensayo de Materiales , Presión , Textiles
19.
PLoS One ; 13(6): e0197558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897933

RESUMEN

Pressure garment therapy is often prescribed to improve scar properties following full-thickness burn injuries. Pressure garment therapy is generally recommended for long periods of time following injury (1-2 years), though it is plagued by extremely low patient compliance. The goal of this study was to examine the effects of early cessation of pressure garment therapy on scar properties. Full-thickness burn injuries were created along the dorsum of red Duroc pigs. The burn eschar was excised and wound sites autografted with split-thickness skin. Scars were treated with pressure garments within 1 week of injury and pressure was maintained for either 29 weeks (continuous pressure) or for 17 weeks followed by cessation of pressure for an additional 12 weeks (pressure released); scars receiving no treatment served as controls. Scars that underwent pressure garment therapy were significantly smoother and less contracted with decreased scar height compared to control scars at 17 weeks. These benefits were maintained in the continuous pressure group until week 29. In the pressure released group, grafts significantly contracted and became more raised, harder and rougher after the therapy was discontinued. Pressure cessation also resulted in large changes in collagen fiber orientation and increases in collagen fiber thickness. The results suggest that pressure garment therapy effectively improves scar properties following severe burn injury; however, early cessation of the therapy results in substantial loss of these improvements.


Asunto(s)
Quemaduras/terapia , Cicatriz/terapia , Cicatrización de Heridas , Animales , Quemaduras/fisiopatología , Cicatriz/fisiopatología , Vestuario , Vendajes de Compresión , Humanos , Presión , Piel/patología , Porcinos , Trasplantes/patología
20.
Burns ; 44(4): 917-930, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29661554

RESUMEN

Animal models provide a way to investigate scar therapies in a controlled environment. It is necessary to produce uniform, reproducible scars with high anatomic and biologic similarity to human scars to better evaluate the efficacy of treatment strategies and to develop new treatments. In this study, scar development and maturation were assessed in a porcine full-thickness burn model with immediate excision and split-thickness autograft coverage. Red Duroc pigs were treated with split-thickness autografts of varying thickness: 0.026in. ("thin") or 0.058in. ("thick"). Additionally, the thin skin grafts were meshed and expanded at 1:1.5 or 1:4 to evaluate the role of skin expansion in scar formation. Overall, the burn-excise-autograft model resulted in thick, raised scars. Treatment with thick split-thickness skin grafts resulted in less contraction and reduced scarring as well as improved biomechanics. Thin skin autograft expansion at a 1:4 ratio tended to result in scars that contracted more with increased scar height compared to the 1:1.5 expansion ratio. All treatment groups showed Matrix Metalloproteinase 2 (MMP2) and Transforming Growth Factor ß1 (TGF-ß1) expression that increased over time and peaked 4 weeks after grafting. Burns treated with thick split-thickness grafts showed decreased expression of pro-inflammatory genes 1 week after grafting, including insulin-like growth factor 1 (IGF-1) and TGF-ß1, compared to wounds treated with thin split-thickness grafts. Overall, the burn-excise-autograft model using split-thickness autograft meshed and expanded to 1:1.5 or 1:4, resulted in thick, raised scars similar in appearance and structure to human hypertrophic scars. This model can be used in future studies to study burn treatment outcomes and new therapies.


Asunto(s)
Autoinjertos/anatomía & histología , Quemaduras/cirugía , Cicatriz Hipertrófica/patología , Cicatriz/patología , Trasplante de Piel/métodos , Animales , Autoinjertos/metabolismo , Quemaduras/complicaciones , Cicatriz/etiología , Cicatriz/metabolismo , Cicatriz Hipertrófica/etiología , Cicatriz Hipertrófica/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Tamaño de los Órganos , Sus scrofa , Porcinos , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...