Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dev Ctries ; 10(8): 870-9, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27580334

RESUMEN

INTRODUCTION: Coinfection with certain members of the Flaviviridae, such as Dengue Virus (DV), West Nile Virus (WNV) Yellow Fever Virus (YFV) and most importantly, GBV-C have been documented to reduce HIV-1 viral load in vivo. Numerous studies strongly support the notion that persistent coinfection with non-pathogenic virus prolongs survival in HIV-1 infected individuals. Coinfected individuals show higher CD4+ cell counts, lower HIV-1 RNA viral loads and live three times longer than clinically matched HIV-1 monoinfected patients. We have previously shown that one of the major anti-HIV defenses conferred by GBV-C coinfection is the upregulation of intracellular miRNAs in CD4+ cells that share significant mutual homologies with GBV-C and HIV-1 (>80%) genomes. METHODOLOGY: Genome-wide bioinformatics analyses were carried out to search for miRNA binding sites in mutual homologies between HIV and several members of the Flaviviridae. RESULTS: Several miRNAs shared significant mutual homology with HIV-1 genetic sequences and GBV-A, B, C, DV, WNV and YFV. These may be responsible for beneficial effects in HIV-1 infected individuals. Three highly mutual homologous miRNAs (i.e. miR-627-5, miR-369-5 and miR-548f), expressed in CD4+ cell lines, reduce HIV-1 replication by up to 90% whereas miRNAs with low mutual homologies (i.e. miR-34-1 and miR-508) impart only slight inhibition of HIV-1. CONCLUSION: We hypothesize that a recombinant GBV-C-based vector can be constructed which expresses several beneficial genetic motifs of the Flaviviridae without causing any side effects while stimulating a wide array of beneficial miRNAs that can more efficiently prevent HIV-1 infection.


Asunto(s)
Flaviviridae/genética , VIH-1/genética , MicroARNs/genética , Homología de Secuencia , Interferencia Viral , Sitios de Unión , Linfocitos T CD4-Positivos/virología , Biología Computacional , Humanos , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...