Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 353(3): 540-55, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16181635

RESUMEN

The U6 RNA intramolecular stem-loop (ISL) is a conserved component of the spliceosome, and contains an essential metal ion binding site centered between a protonated adenine, A79, and U80. Correlated with protonation of A79, U80 undergoes a base-flipping conformational change accompanied by significant helical movement. We have investigated the dynamics of the U6 ISL by analyzing the power dependence of 13C NMR relaxation rates in the rotating frame. The data provide evidence that the conformational transition is centered around an exchange lifetime of 84 micros. The U80 nucleotide displays low internal mobility on the picosecond time-scale at pH 7.0 but high internal mobility at pH 6.0, in agreement with the global transition resulting in the base of U80 adopting a looped-out conformation with increased dynamic disorder. A kinetic analysis suggests that the conformational change, rather than adenine protonation, is the rate-limiting step in the pathway of the conformational transition. Two nucleotides, U70 and U80, were found from chemical shift perturbation mapping to interact with the magnesium ion, with apparent K(d) values in the micromolar to millimolar range. These nucleotides also displayed metal ion-induced elevation of R1 rates, which can be explained by a model that assumes dynamic metal ion coordination concomitant with an induced higher shielding anisotropy for the base 13C nuclei. Addition of Mg2+ shifts the conformational equilibrium toward the high-pH (base-stacked) structure, accompanied by a significant drop in the apparent pK(a) of A79.


Asunto(s)
Metales/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , ARN Nuclear Pequeño/metabolismo , Sitios de Unión , Concentración de Iones de Hidrógeno , Iones , ARN Nuclear Pequeño/química
3.
Biochemistry ; 43(43): 13739-47, 2004 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-15504036

RESUMEN

The U6 RNA intramolecular stem-loop (ISL) structure is an essential component of the spliceosome and binds a metal ion required for pre-messenger RNA splicing. The metal binding internal loop region of the stem contains a partially protonated C67-(+)A79 base pair (pK(a) = 6.5) and an unpaired U80 nucleotide that is stacked within the helix at pH 7.0. Here, we determine that protonation occurs with an exchange lifetime of approximately 20 micros and report the solution structures of the U6 ISL at pH 5.7. The differences between pH 5.7 and 7.0 structures reveal that the pH change significantly alters the RNA conformation. At lower pH, U80 is flipped out into the major groove. Base flipping involves a purine stacking interaction of flanking nucleotides, inversion of the sugar pucker 5' to the flipped base, and phosphodiester backbone rearrangement. Analysis of residual dipolar couplings as a function of pH indicates that base flipping is not restricted to a local conformational change. Rather, base flipping alters the alignment of the upper and lower helices. The alternative conformations of the U6 ISL reveal striking structural similarities with both the NMR and crystal structures of domain 5 of self-splicing group II introns. These structures suggest that base flipping at an essential metal binding site is a conserved feature of the splicing machinery for both the spliceosome and group II self-splicing introns.


Asunto(s)
Emparejamiento Base , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN Nuclear Pequeño/química , Termodinámica , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Protones , ARN de Hongos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
4.
FEBS Lett ; 555(1): 139-43, 2003 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-14630334

RESUMEN

Recent progress from our laboratories to determine structures of small membrane proteins (up to 20 kDa) in detergent micelles by solution nuclear magnetic resonance (NMR) is reviewed. NMR opens a new window to also study, for the first time, the dynamics of membrane proteins. We report on recent attempts to correlate dynamic measurements on OmpA with the ion channel function of this protein. We also summarize how NMR and spin-label electron paramagnetic resonance spectroscopy and selective mutagenesis can be combined to provide a structural basis towards understanding the mechanism of influenza hemagglutinin-mediated membrane fusion.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Detergentes , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Soluciones , Termodinámica , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo
5.
J Biol Chem ; 278(33): 31331-9, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12732626

RESUMEN

In sequence-function investigations, approaches are needed for rapidly screening protein variants for possible changes in conformation. Recent NMR methods permit direct detection of hydrogen bonds through measurements of scalar couplings that traverse hydrogen bonds (trans-hydrogen bond couplings). We have applied this approach to screen a series of five single site mutants of the sweet protein brazzein with altered sweetness for possible changes in backbone hydrogen bonding with respect to wild-type. Long range, three-dimensional data correlating connectivities among backbone 1HN, 15N, and 13C' atoms were collected from the six brazzein proteins labeled uniformly with carbon-13 and nitrogen-15. In wild-type brazzein, this approach identified 17 backbone hydrogen bonds. In the mutants, altered magnitudes of the couplings identified hydrogen bonds that were strengthened or weakened; missing couplings identified hydrogen bonds that were broken, and new couplings indicated the presence of new hydrogen bonds. Within the series of brazzein mutants investigated, a pattern was observed between sweetness and the integrity of particular hydrogen bonds. All three "sweet" variants exhibited the same pattern of hydrogen bonds, whereas all three "non-sweet" variants lacked one hydrogen bond at the middle of the alpha-helix, where it is kinked, and one hydrogen bond in the middle of beta-strands II and III, where they are twisted. Two of the non-sweet variants lack the hydrogen bond connecting the N and C termini. These variants showed greater mobility in the N- and C-terminal regions than wild-type brazzein.


Asunto(s)
Proteínas de Plantas/química , Edulcorantes/química , Enlace de Hidrógeno , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA