Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37998020

RESUMEN

The three most important commercial bacterial insecticides are all derived from subspecies of Bacillus thuringiensis (Bt). Specifically, Bt subsp. kurstaki (Btk) and Bt subsp. aizawai (Bta) are used to control larval lepidopteran pests. The third, Bt subsp. israelensis (Bti), is primarily used to control mosquito and blackfly larvae. All three subspecies produce a parasporal body (PB) during sporulation. The PB is composed of insecticidal proteins that damage the midgut epithelium, initiating a complex process that results in the death of the insect. Among these three subspecies of Bt, Bti is unique as it produces the most complex PB consisting of three compartments. Each compartment is bound by a multilaminar fibrous matrix (MFM). Two compartments contain one protein each, Cry11Aa1 and Cyt1Aa1, while the third contains two, Cry4Aa1/Cry4Ba1. Each compartment is packaged independently before coalescing into the mature spherical PB held together by additional layers of the MFM. This distinctive packaging process is unparalleled among known bacterial organelles, although the underlying molecular biology is yet to be determined. Here, we present structural and molecular evidence that the MFM has a hexagonal pattern to which Bti proteins Bt152 and Bt075 bind. Bt152 binds to a defined spot on the MFM during the development of each compartment, yet its function remains unknown. Bt075 appears to be derived from a bacteriophage major capsid protein (MCP), and though its sequence has markedly diverged, it shares striking 3-D structural similarity to the Escherichia coli phage HK97 Head 1 capsid protein. Both proteins are encoded on Bti's pBtoxis plasmid. Additionally, we have also identified a six-amino acid motif that appears to be part of a novel molecular process responsible for targeting the Cry and Cyt proteins to their cytoplasmic compartments. This paper describes several previously unknown features of the Bti organelle, representing a first step to understanding the biology of a unique process of sorting and packaging of proteins into PBs. The insights from this research suggest a potential for future applications in nanotechnology.

2.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986937

RESUMEN

The NusG paralog RfaH mediates bacterial transcription-translation coupling on genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here we report cryo-EM structures of transcription-translation complexes (TTCs) containing RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP, and with the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs, due to the more restricted flexibility of the RfaH interdomain linker. The results further show that the structural organization of RfaH-coupled TTCs in the "loading state," in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the "loaded state," in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling. One sentence summary: Cryo-EM reveals the structural basis of transcription-translation coupling by RfaH.

3.
Nucleic Acids Res ; 51(8): 4000-4011, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912079

RESUMEN

Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2ß2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and ß subunits are fused and are designated as (αß)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2ß2/(αß)2 GlyRSs. Here we describe structures of the (αß)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped ß half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated ∼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.


Asunto(s)
Glicina-ARNt Ligasa , Glicina-ARNt Ligasa/genética , Anticodón , ARN de Transferencia de Glicerina/química , ARN de Transferencia , Plastidios
4.
Annu Rev Genet ; 56: 187-205, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36055649

RESUMEN

In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.


Asunto(s)
Bacterias , Ribosomas , Bacterias/genética , Ribosomas/genética , ARN Mensajero/genética
5.
Nucleic Acids Res ; 49(17): 10046-10060, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34417618

RESUMEN

Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with -1 frameshifting.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Extensión de la Cadena Peptídica de Translación/genética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ribosomas/metabolismo , Anticodón/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Codón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , ARN Mensajero/genética , Sistemas de Lectura/genética
6.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999154

RESUMEN

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Asunto(s)
COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/química , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Cromatografía en Gel , ARN Polimerasa Dependiente de ARN de Coronavirus/biosíntesis , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis , Mutación , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Replicación Viral
7.
Nat Commun ; 12(1): 328, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436566

RESUMEN

While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Genoma Bacteriano , ARN de Transferencia/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , Aminoacilación , Anticodón/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Hidrólisis , Metilación , Modelos Moleculares , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
8.
Science ; 369(6509): 1359-1365, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32820061

RESUMEN

In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Factores de Elongación de Péptidos/química , Biosíntesis de Proteínas , Factores de Transcripción/química , Transcripción Genética , Factores de Elongación Transcripcional/química , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Conformación Proteica , ARN Mensajero/química
9.
J Biol Chem ; 295(19): 6570-6585, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32249211

RESUMEN

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus necator/enzimología , Formiato Deshidrogenasas/química , Proteínas Hierro-Azufre/química , Complejos Multienzimáticos/química , Dominio Catalítico , Cristalografía por Rayos X , Mononucleótido de Flavina/química , Cinética , NAD/química
10.
Mol Microbiol ; 112(5): 1531-1551, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449700

RESUMEN

The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Myxococcus xanthus/crecimiento & desarrollo , Myxococcus xanthus/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Transducción de Señal/genética , Treonina/genética , Transcripción Genética/genética
11.
Nat Commun ; 10(1): 2629, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201355

RESUMEN

Light initiates chloroplast biogenesis by activating photosynthesis-associated genes encoded by not only the nuclear but also the plastidial genome, but how photoreceptors control plastidial gene expression remains enigmatic. Here we show that the photoactivation of phytochromes triggers the expression of photosynthesis-associated plastid-encoded genes (PhAPGs) by stimulating the assembly of the bacterial-type plastidial RNA polymerase (PEP) into a 1000-kDa complex. Using forward genetic approaches, we identified REGULATOR OF CHLOROPLAST BIOGENESIS (RCB) as a dual-targeted nuclear/plastidial phytochrome signaling component required for PEP assembly. Surprisingly, RCB controls PhAPG expression primarily from the nucleus by interacting with phytochromes and promoting their localization to photobodies for the degradation of the transcriptional regulators PIF1 and PIF3. RCB-dependent PIF degradation in the nucleus signals the plastids for PEP assembly and PhAPG expression. Thus, our findings reveal the framework of a nucleus-to-plastid anterograde signaling pathway by which phytochrome signaling in the nucleus controls plastidial transcription.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Fitocromo/metabolismo , Tiorredoxinas/metabolismo , Transcripción Genética/fisiología , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/metabolismo , Proteolisis , Transducción de Señal/fisiología , Transcripción Genética/efectos de la radiación
12.
Int J Mol Sci ; 20(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137816

RESUMEN

The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Transcripción Genética
13.
Nucleic Acids Res ; 45(19): 11043-11055, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977553

RESUMEN

In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética
14.
J Biol Chem ; 290(34): 20856-20864, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26163516

RESUMEN

The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.


Asunto(s)
Apoproteínas/química , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/química , GTP Fosfohidrolasas/química , Guanosina Difosfato/química , Fosfoproteínas/química , Pirofosfatasas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Cristalografía por Rayos X , Escherichia coli Enteropatógena/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Guanosina Difosfato/metabolismo , Cinética , Modelos Moleculares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Pirofosfatasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas/genética , Subunidades Ribosómicas Pequeñas/metabolismo , Transducción de Señal , Estrés Fisiológico , Termodinámica , Virulencia
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2890-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372680

RESUMEN

All evidence to date indicates that at T = 100 K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scaling B factor or integrated intensity versus dose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. At T = 100 and 300 K, the half doses are 64 MGy (at 3 Šresolution) and 150 kGy (at 5 Šresolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300 K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100 K relative to 300 K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.


Asunto(s)
Ribosomas/efectos de la radiación , Thermus thermophilus/efectos de la radiación , Cristalización , Cristalografía por Rayos X , Tolerancia a Radiación , Temperatura , Rayos X
16.
J Infect Dis ; 208(11): 1830-40, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901084

RESUMEN

Ubiquitination is a posttranslational modification that regulates protein degradation and signaling in eukaryotes. Although it is acknowledged that pathogens exploit ubiquitination to infect mammalian cells, it remains unknown how microbes interact with the ubiquitination machinery in medically relevant arthropods. Here, we show that the ubiquitination machinery is present in the tick Ixodes scapularis and demonstrate that the E3 ubiquitin ligase named x-linked inhibitor of apoptosis protein (XIAP) restricts bacterial colonization of this arthropod vector. We provide evidence that xiap silencing significantly increases tick colonization by the bacterium Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. We also demonstrate that (i) XIAP polyubiquitination is dependent on the really interesting new gene (RING) catalytic domain, (ii) XIAP polyubiquitination occurs via lysine (K)-63 but not K-48 residues, and (iii) XIAP-dependent K-63 polyubiquitination requires zinc for catalysis. Taken together, our data define a role for ubiquitination during bacterial colonization of disease vectors.


Asunto(s)
Anaplasma phagocytophilum/fisiología , Vectores Arácnidos/enzimología , Ehrlichiosis/microbiología , Ixodes/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Vectores Arácnidos/microbiología , Dominio Catalítico , Humanos , Ixodes/microbiología , Interferencia de ARN , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína Inhibidora de la Apoptosis Ligada a X/genética
17.
Curr Opin Struct Biol ; 22(6): 750-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22981944

RESUMEN

The structures of ribosomes in complex with inhibitors of translation have not only shed light on the interactions of antibiotics with the ribosome but also on the underlying mechanisms by which they interfere with the ribosome function. Several recent papers [1(•),2(••),3,4] have correlated the available ribosome structures with the wealth of biochemical data [5(•)]. In this review we shall focus on the lessons learned for drug specificity rather than presenting a comprehensive survey of the known structures of ribosome complexes with antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana , Ribosomas/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Ribosomas/química , Ribosomas/metabolismo , Especificidad por Sustrato
18.
Science ; 336(6083): 915-8, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22605777

RESUMEN

Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas de Escherichia coli/química , Proteínas Ribosómicas/química , Ribosomas/química , Thermus thermophilus/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Iniciación de la Cadena Peptídica Traduccional , Factores Procarióticos de Iniciación/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura
19.
Biochemistry ; 50(42): 9114-24, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21923197

RESUMEN

We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,ß-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.


Asunto(s)
Calcio/química , ADN Polimerasa Dirigida por ADN/química , Magnesio/química , Manganeso/química , Fósforo/química , Proteínas Virales/química , Sustitución de Aminoácidos/genética , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Difosfatos/química , Enlace de Hidrógeno , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Proteínas Virales/clasificación , Proteínas Virales/genética
20.
J Mol Biol ; 406(4): 558-70, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21216248

RESUMEN

We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3'-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.


Asunto(s)
ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , ADN Polimerasa Dirigida por ADN/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Mutación Puntual , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...