Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466236

RESUMEN

Aversive stimuli can cause hippocampal place cells to remap their firing fields, but it is not known whether remapping plays a role in storing memories of aversive experiences. Here, we addressed this question by performing in vivo calcium imaging of CA1 place cells in freely behaving rats (n = 14). Rats were first trained to prefer a short path over a long path for obtaining food reward, then trained to avoid the short path by delivering a mild footshock. Remapping was assessed by comparing place cell population vector similarity before acquisition versus after extinction of avoidance. Some rats received shock after systemic injections of the amnestic drug scopolamine at a dose (1 mg/kg) that impaired avoidance learning but spared spatial tuning and shock-evoked responses of CA1 neurons. Place cells remapped significantly more following remembered than forgotten shocks (drug-free versus scopolamine conditions); shock-induced remapping did not cause place fields to migrate toward or away from the shocked location and was similarly prevalent in cells that were responsive versus non-responsive to shocks. When rats were exposed to a neutral barrier rather than aversive shock, place cells remapped significantly less in response to the barrier. We conclude that place cell remapping occurs in response to events that are remembered rather than merely perceived and forgotten, suggesting that reorganization of hippocampal population codes may play a role in storing memories for aversive events.


The human brain is able to remember experiences that occurred at specific places and times, such as a birthday party held at a particular restaurant. A part of the brain known as the hippocampus helps to store these episodic memories, but how exactly is not fully understood. Within the hippocampus are specialized neurons known as place cells which 'label' locations with unique patterns of brain activity. When we revisit a place, such as the restaurant, place cells recall the stored pattern of brain activity allowing us to recognize the familiar location. It has been shown that a new negative experience at a familiar place ­ for example, if we went back to the restaurant and had a terrible meal ­ triggers place cells to update the brain activity label associated with the location. However, it remains uncertain whether this re-labelling assists in storing the memory of the unpleasant experience. To investigate, Blair et al. used a technique known as calcium imaging to monitor place cells in the hippocampus of freely moving rats. The rats were given a new experience ­ a mild foot shock ­ at a previously explored location. Tiny cameras attached to their heads were then used to record the activity of hundreds of place cells before and after the shock. Initially, the rats remembered the aversive experience and avoided the location where they had been shocked. Over time, the rats began to return to the location; however, their place cells displayed different patterns of activity compared to their previous visits before the shock. To test whether this change in place cell activity corresponded with new memories, another group of rats were administered a mild amnesia-inducing drug before the shock, causing them to forget the experience. These rats did not avoid the shock site or show any changes in place cell activity when they revisited it. These findings imply that new events cause place cells to alter their 'label' for a location only if the event is remembered, not if it is forgotten. This indicates that alterations in place cell activity patterns may play a role in storing memories of unpleasant experiences. Having a better understanding of how episodic memories are stored could lead to better treatments for diseases that impair memory, such as Alzheimer's disease and age-related dementia.


Asunto(s)
Células de Lugar , Ratas , Animales , Células de Lugar/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Derivados de Escopolamina , Región CA1 Hipocampal
2.
Sci Adv ; 9(16): eadg3918, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083539

RESUMEN

Imaging large-population, single-cell fluorescent dynamics in freely behaving animals larger than mice remains a key endeavor of neuroscience. We present a large-field-of-view open-source miniature microscope (MiniLFOV) designed for large-scale (3.6 mm × 2.7 mm), cellular resolution neural imaging in freely behaving rats. It has an electrically adjustable working distance of up to 3.5 mm ± 100 µm, incorporates an absolute head orientation sensor, and weighs only 13.9 g. The MiniLFOV is capable of both deep brain and cortical imaging and has been validated in freely behaving rats by simultaneously imaging >1000 GCaMP7s-expressing neurons in the hippocampal CA1 layer and in head-fixed mice by simultaneously imaging ~2000 neurons in the dorsal cortex through a cranial window. The MiniLFOV also supports optional wire-free operation using a novel, wire-free data acquisition expansion board. We expect that this new open-source implementation of the UCLA Miniscope platform will enable researchers to address novel hypotheses concerning brain function in freely behaving animals.


Asunto(s)
Encéfalo , Microscopía , Ratones , Ratas , Animales , Microscopía/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas/fisiología , Cráneo , Cabeza
3.
IEEE Trans Biomed Circuits Syst ; 17(2): 169-179, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071510

RESUMEN

Miniaturized calcium imaging is an emerging neural recording technique that has been widely used for monitoring neural activity on a large scale at a specific brain region of rats or mice. Most existing calcium-image analysis pipelines operate offline. This results in long processing latency, making it difficult to realize closed-loop feedback stimulation for brain research. In recent work, we have proposed an FPGA-based real-time calcium image processing pipeline for closed-loop feedback applications. It can perform real-time calcium image motion correction, enhancement, fast trace extraction, and real-time decoding from extracted traces. Here, we extend this work by proposing a variety of neural network based methods for real-time decoding and evaluate the tradeoff among these decoding methods and accelerator designs. We introduce the implementation of the neural network based decoders on the FPGA, and show their speedup against the implementation on the ARM processor. Our FPGA implementation enables the real-time calcium image decoding with sub-ms processing latency for closed-loop feedback applications.


Asunto(s)
Calcio , Redes Neurales de la Computación , Ratas , Ratones , Animales , Retroalimentación , Encéfalo/fisiología
4.
Elife ; 122023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692269

RESUMEN

Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data are typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n = 12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n = 2) during an instrumental task from calcium fluorescence in orbitofrontal cortex. DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array hardware for real-time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.


Asunto(s)
Calcio , Computadores , Ratas , Animales , Microscopía
5.
J Neurosci ; 40(43): 8329-8342, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958567

RESUMEN

Hippocampal CA1 place cell spatial maps are known to alter their firing properties in response to contextual fear conditioning, a process called "remapping." In the present study, we use chronic calcium imaging to examine remapping during fear retrieval and extinction of an inhibitory avoidance task in mice of both sexes over an extended period of time and with thousands of neurons. We demonstrate that hippocampal ensembles encode space at a finer scale following fear memory acquisition. This effect is strongest near the shock grid. We also characterize the long-term effects of shock on place cell ensemble stability, demonstrating that shock delivery induces several days of high fear and low between-session place field stability, followed by a new, stable spatial representation that appears after fear extinction. Finally, we identify a novel group of CA1 neurons that robustly encode freeze behavior independently from spatial location. Thus, following fear acquisition, hippocampal CA1 place cells sharpen their spatial tuning and dynamically change spatial encoding stability throughout fear learning and extinction.SIGNIFICANCE STATEMENT The hippocampus contains place cells that encode an animal's location. This spatial code updates, or remaps, in response to environmental change. It is known that contextual fear can induce such remapping; in the present study, we use chronic calcium imaging to examine inhibitory avoidance-induced remapping over an extended period of time and with thousands of neurons and demonstrate that hippocampal ensembles encode space at a finer scale following electric shock, an effect which is enhanced by threat proximity. We also identify a novel group of freeze behavior-activated neurons. These results suggest that, more than merely shuffling their spatial code following threat exposure, place cells enhance their spatial coding with the possible benefit of improved threat localization.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Hipocampo/fisiología , Animales , Reacción de Prevención , Conducta Animal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Señalización del Calcio , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
6.
J Neurosci ; 40(29): 5628-5643, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32527984

RESUMEN

The ACC is implicated in effort exertion and choices based on effort cost, but it is still unclear how it mediates this cost-benefit evaluation. Here, male rats were trained to exert effort for a high-value reward (sucrose pellets) in a progressive ratio lever-pressing task. Trained rats were then tested in two conditions: a no-choice condition where lever-pressing for sucrose was the only available food option, and a choice condition where a low-value reward (lab chow) was freely available as an alternative to pressing for sucrose. Disruption of ACC, via either chemogenetic inhibition or excitation, reduced lever-pressing in the choice, but not in the no-choice, condition. We next looked for value coding cells in ACC during effortful behavior and reward consumption phases during choice and no-choice conditions. For this, we used in vivo miniaturized fluorescence microscopy to reliably track responses of the same cells and compare how ACC neurons respond during the same effortful behavior where there was a choice versus when there was no-choice. We found that lever-press and sucrose-evoked responses were significantly weaker during choice compared with no-choice sessions, which may have rendered them more susceptible to chemogenetic disruption. Together, findings from our interference experiments and neural recordings suggest that a mechanism by which ACC mediates effortful decisions is in the discrimination of the utility of available options. ACC regulates these choices by providing a stable population code for the relative value of different options.SIGNIFICANCE STATEMENT The ACC is implicated in effort-based decision-making. Here, we used chemogenetics and in vivo calcium imaging to explore its mechanism. Rats were trained to lever press for a high-value reward and tested in two conditions: a no-choice condition where lever-pressing for the high-value reward was the only option, and a choice condition where a low-value reward was also available. Inhibition or excitation of ACC reduced effort toward the high-value option, but only in the choice condition. Neural responses in ACC were weaker in the choice compared with the no-choice condition. A mechanism by which ACC regulates effortful decisions is in providing a stable population code for the discrimination of the utility of available options.


Asunto(s)
Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Esfuerzo Físico/fisiología , Recompensa , Animales , Conducta Animal , Señalización del Calcio , Condicionamiento Operante , Masculino , Imagen Óptica/métodos , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...