Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766094

RESUMEN

Enterococcus faecalis is a common cause of healthcare acquired bloodstream infections and catheter associated urinary tract infections (CAUTI) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, Δ hylA exhibited defects in bladder colonization and dissemination to the bloodstream, and Δ hylB exhibited a defect in kidney colonization. Furthermore, a Δ hylA Δ hylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both HA and CS in vitro while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during stationary phase and also contributed to dampening of LPS-mediated NF-Bκ activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.

2.
Stat Appl Genet Mol Biol ; 22(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988745

RESUMEN

Translation of genomic discovery, such as single-cell sequencing data, to clinical decisions remains a longstanding bottleneck in the field. Meanwhile, computational systems biological models, such as cellular metabolism models and cell signaling pathways, have emerged as powerful approaches to provide efficient predictions in metabolites and gene expression levels, respectively. However, there has been limited research on the integration between these two models. This work develops a methodology for integrating computational models of probabilistic gene regulatory networks with a constraint-based metabolism model. By using probabilistic reasoning with Bayesian Networks, we aim to predict cell-specific changes under different interventions, which are embedded into the constraint-based models of metabolism. Applications to single-cell sequencing data of glioblastoma brain tumors generate predictions about the effects of pharmaceutical interventions on the regulatory network and downstream metabolisms in different cell types from the tumor microenvironment. The model presents possible insights into treatments that could potentially suppress anaerobic metabolism in malignant cells with minimal impact on other cell types' metabolism. The proposed integrated model can guide therapeutic target prioritization, the formulation of combination therapies, and future drug discovery. This model integration framework is also generalizable to other applications, such as different cell types, organisms, and diseases.


Asunto(s)
Redes y Vías Metabólicas , Microambiente Tumoral , Microambiente Tumoral/genética , Teorema de Bayes , Redes y Vías Metabólicas/genética , Modelos Biológicos , Redes Reguladoras de Genes
3.
Artículo en Inglés | MEDLINE | ID: mdl-36583207

RESUMEN

Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different objective functions, different parameters, and dissimilarity measures. The purpose of clustering is versatile, often playing critical roles in the early stages of exploratory data analysis and as an endpoint for knowledge and discovery. Thus, understanding the quality of a clustering is of critical importance. The concept of stability has emerged as a strategy for assessing the performance and reproducibility of data clustering. The key idea is to produce perturbed data sets that are very close to the original, and cluster them. If the clustering is stable, then the clusters from the original data will be preserved in the perturbed data clustering. The nature of the perturbation, and the methods for quantifying similarity between clusterings, are nontrivial, and ultimately what distinguishes many of the stability estimation methods apart. In this review, we provide an overview of the very active research area of cluster stability estimation and discuss some of the open questions and challenges that remain in the field. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification.

4.
Metab Eng ; 74: 139-149, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36341776

RESUMEN

The production of terpenoids from engineered microbes contributes markedly to the bioeconomy by providing essential medicines, sustainable materials, and renewable fuels. The mevalonate pathway leading to the synthesis of terpenoid precursors has been extensively targeted for engineering. Nevertheless, the importance of individual pathway enzymes to the overall pathway flux and final terpenoid yield is less known, especially enzymes that are thought to be non-rate-limiting. To investigate the individual contribution of the five non-rate-limiting enzymes in the mevalonate pathway, we created a combinatorial library of 243 Saccharomyces cerevisiae strains, each having an extra copy of the mevalonate pathway integrated into the genome and expressing the non-rate-limiting enzymes from a unique combination of promoters. High-throughput screening combined with machine learning algorithms revealed that the mevalonate kinase, Erg12p, stands out as the critical enzyme that influences product titer. ERG12 is ideally expressed from a medium-strength promoter which is the 'sweet spot' resulting in high product yield. Additionally, a platform strain was created by targeting the mevalonate pathway to both the cytosol and peroxisomes. The dual localization synergistically increased terpenoid production and implied that some mevalonate pathway intermediates, such as mevalonate, isopentyl pyrophosphate (IPP), and dimethylallyl pyrophosphate (DMAPP), are diffusible across peroxisome membranes. The platform strain resulted in 94-fold, 60-fold, and 35-fold improved titer of monoterpene geraniol, sesquiterpene α-humulene, and triterpene squalene, respectively. The terpenoid platform strain will serve as a chassis for producing any terpenoids and terpene derivatives.


Asunto(s)
Ácido Mevalónico , Saccharomyces cerevisiae , Ácido Mevalónico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Difosfatos/metabolismo , Ingeniería Metabólica/métodos , Aprendizaje Automático
5.
J Pharmacokinet Pharmacodyn ; 49(1): 65-79, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611796

RESUMEN

The incidence of systemic and metabolic co-morbidities increases with aging. The purpose was to investigate a novel paradigm for modeling the orchestrated changes in many disease-related biomarkers that occur during aging. A hybrid strategy that integrates machine learning and stochastic modeling was evaluated for modeling the long-term dynamics of biomarker systems. Bayesian networks (BN) were used to identify quantitative systems pharmacology (QSP)-like models for the inter-dependencies for three disease-related datasets of metabolic (MB), metabolic with leptin (MB-L), and cardiovascular (CVB) biomarkers from the NHANES database. Biomarker dynamics were modeled using discrete stochastic vector autoregression (VAR) equations. BN were used to derive the topological order and connectivity of a data driven QSP model structure for inter-dependence of biomarkers across the lifespan. The strength and directionality of the connections in the QSP models were evaluated using bootstrapping. VAR models based on QSP model structures from BN were assessed for modeling biomarker system dynamics. BN-restricted VAR models of order 1 were identified as parsimonious and effective for characterizing biomarker system dynamics in the MB, MB-L and CVB datasets. Simulation of annual and triennial data for each biomarker provided good fits and predictions of the training and test datasets, respectively. The novel strategy harnesses machine learning to construct QSP model structures for inter-dependence of biomarkers. Stochastic modeling with the QSP models was effective for predicting the age-varying dynamics of disease-relevant biomarkers over the lifespan.


Asunto(s)
Macrodatos , Farmacología en Red , Teorema de Bayes , Biomarcadores , Progresión de la Enfermedad , Humanos , Aprendizaje Automático , Modelos Biológicos , Encuestas Nutricionales
6.
Environ Res ; 200: 111401, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089746

RESUMEN

BACKGROUND: Untargeted metabolomics analyses have indicated that fatty acids and their hydroxy derivatives may be important metabolites in the mechanism through which air pollution potentiates diseases. This study aimed to use targeted analysis to investigate how metabolites in arachidonic acid (AA) and linoleic acid (LA) pathways respond to short-term changes in air pollution exposure. We further explored how they might interact with markers of antioxidant enzymes and systemic inflammation. METHODS: This study included a subset of participants (n = 53) from the Beijing Olympics Air Pollution (BoaP) study in which blood samples were collected before, during, and after the Beijing Olympics. Hydroxy fatty acids were measured by liquid chromatography/mass spectrometry (LC/MS). Native total fatty acids were measured as fatty acid methyl esters (FAMEs) using gas chromatography. A set of chemokines were measured by ELISA-based chemiluminescent assay and antioxidant enzyme activities were analyzed by kinetic enzyme assays. Changes in levels of metabolites over the three time points were examined using linear mixed-effects models, adjusting for age, sex, body mass index (BMI), and smoking status. Pearson correlation and repeated measures correlation coefficients were calculated to explore the relationships of metabolites with levels of serum chemokines and antioxidant enzymes. RESULTS: 12-hydroxyeicosatetraenoic acid (12-HETE) decreased by 50.5% (95% CI: -66.5, -34.5; p < 0.0001) when air pollution dropped during the Olympics and increased by 119.4% (95% CI: 36.4, 202.3; p < 0.0001) when air pollution returned to high levels after the Olympics. In contrast, 13-hydroxyoctadecadienoic acid (13-HODE) elevated significantly (p = 0.023) during the Olympics and decreased nonsignificantly after the games (p = 0.104). Interleukin 8 (IL-8) correlated with 12-HETE (r = 0.399, BH-adjusted p = 0.004) and 13-HODE (r = 0.342, BH-adjusted p = 0.014) over the three points; it presented a positive and moderate correlation with 12-HETE during the Olympics (r = 0.583, BH-adjusted p = 0.002) and with 13-HODE before the Olympics (r = 0.543, BH-adjusted p = 0.008). CONCLUSION: AA- and LA-derived hydroxy metabolites are associated with air pollution and might interact with systemic inflammation in response to air pollution exposure.


Asunto(s)
Contaminación del Aire , Ácido Linoleico , Contaminación del Aire/análisis , Ácido Araquidónico , Biomarcadores , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ácidos Linoleicos
7.
Cardiooncology ; 7(1): 17, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975650

RESUMEN

BACKGROUND: The CBR3 V244M single nucleotide polymorphism has been linked to the risk of anthracycline-related cardiomyopathy in survivors of childhood cancer. There have been limited prospective studies examining the impact of CBR3 V244M on the risk for anthracycline-related cardiotoxicity in adult cohorts. OBJECTIVES: This study evaluated the presence of associations between CBR3 V244M genotype status and changes in echocardiographic parameters in breast cancer patients undergoing doxorubicin treatment. METHODS: We recruited 155 patients with breast cancer receiving treatment with doxorubicin (DOX) at Roswell Park Comprehensive Care Center (Buffalo, NY) to a prospective single arm observational pharmacogenetic study. Patients were genotyped for the CBR3 V244M variant. 92 patients received an echocardiogram at baseline (t0 month) and at 6 months (t6 months) of follow up after DOX treatment. Apical two-chamber and four-chamber echocardiographic images were used to calculate volumes and left ventricular ejection fraction (LVEF) using Simpson's biplane rule by investigators blinded to all patient data. Volumetric indices were evaluated by normalizing the cardiac volumes to the body surface area (BSA). RESULTS: Breast cancer patients with CBR3 GG and AG genotypes both experienced a statistically significant reduction in LVEF at 6 months following initiation of DOX treatment for breast cancer compared with their pre-DOX baseline study. Patients homozygous for the CBR3 V244M G allele (CBR3 V244) exhibited a further statistically significant decrease in LVEF at 6 months following DOX therapy in comparison with patients with heterozygous AG genotype. We found no differences in age, pre-existing cardiac diseases associated with myocardial injury, cumulative DOX dose, or concurrent use of cardioprotective medication between CBR3 genotype groups. CONCLUSIONS: CBR3 V244M genotype status is associated with changes in echocardiographic parameters suggestive of early anthracycline-related cardiomyopathy in subjects undergoing chemotherapy for breast cancer.

8.
Stat Anal Data Min ; 14(2): 129-143, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33777285

RESUMEN

Graphs can be used to represent the direct and indirect relationships between variables, and elucidate complex relationships and interdependencies. Detecting structure within a graph is a challenging problem. This problem is studied over a range of fields and is sometimes termed community detection, module detection, or graph partitioning. A popular class of algorithms for module detection relies on optimizing a function of modularity to identify the structure. In practice, graphs are often learned from the data, and thus prone to uncertainty. In these settings, the uncertainty of the network structure can become exaggerated by giving unreliable estimates of the module structure. In this work, we begin to address this challenge through the use of a nonparametric bootstrap approach to assessing the stability of module detection in a graph. Estimates of stability are presented at the level of the individual node, the inferred modules, and as an overall measure of performance for module detection in a given graph. Furthermore, bootstrap stability estimates are derived for complexity parameter selection that ultimately defines a graph from data in a way that optimizes stability. This approach is utilized in connection with correlation graphs but is generalizable to other graphs that are defined through the use of dissimilarity measures. We demonstrate our approach using a broad range of simulations and on a metabolomics dataset from the Beijing Olympics Air Pollution study. These approaches are implemented using bootcluster package that is available in the R programming language.

9.
BMC Bioinformatics ; 20(1): 386, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291905

RESUMEN

BACKGROUND: Mathematical models of biological networks can provide important predictions and insights into complex disease. Constraint-based models of cellular metabolism and probabilistic models of gene regulatory networks are two distinct areas that have progressed rapidly in parallel over the past decade. In principle, gene regulatory networks and metabolic networks underly the same complex phenotypes and diseases. However, systematic integration of these two model systems remains a fundamental challenge. RESULTS: In this work, we address this challenge by fusing probabilistic models of gene regulatory networks into constraint-based models of metabolism. The novel approach utilizes probabilistic reasoning in BN models of regulatory networks serves as the "glue" that enables a natural interface between the two systems. Probabilistic reasoning is used to predict and quantify system-wide effects of perturbation to the regulatory network in the form of constraints for flux variability analysis. In this setting, both regulatory and metabolic networks inherently account for uncertainty. Applications leverage constraint-based metabolic models of brain metabolism and gene regulatory networks parameterized by gene expression data from the hippocampus to investigate the role of the HIF-1 pathway in Alzheimer's disease. Integrated models support HIF-1A as effective target to reduce the effects of hypoxia in Alzheimer's disease. However, HIF-1A activation is far less effective in shifting metabolism when compared to brain metabolism in healthy controls. CONCLUSIONS: The direct integration of probabilistic regulatory networks into constraint-based models of metabolism provides novel insights into how perturbations in the regulatory network may influence metabolic states. Predictive modeling of enzymatic activity can be facilitated using probabilistic reasoning, thereby extending the predictive capacity of the network. This framework for model integration is generalizable to other systems.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Modelos Estadísticos , Teorema de Bayes , Enzimas/metabolismo , Redes Reguladoras de Genes , Humanos , Fenotipo , Transducción de Señal
10.
Environ Health Perspect ; 127(5): 57010, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31140880

RESUMEN

BACKGROUND: The metabolome is a collection of exogenous chemicals and metabolites from cellular processes that may reflect the body's response to environmental exposures. Studies of air pollution and metabolomics are limited. OBJECTIVES: To explore changes in the human metabolome before, during, and after the 2008 Beijing Olympics Games, when air pollution was high, low, and high, respectively. METHODS: Serum samples were collected before, during, and after the Olympics from 26 participants in an existing panel study. Gas and ultra-high performance liquid chromatography/mass spectrometry were used in metabolomics analysis. Repeated measures ANOVA, network analysis, and enrichment analysis methods were employed to identify metabolites and classes associated with air pollution changes. RESULTS: A total of 886 molecules were measured in our metabolomics analysis. Network partitioning identified four modules with 65 known metabolites that significantly changed across the three time points. All known molecules in the first module ([Formula: see text]) were lipids (e.g., eicosapentaenoic acid, stearic acid). The second module consisted primarily of dipeptides ([Formula: see text], e.g., isoleucylglycine) plus 8 metabolites from four other classes (e.g., hypoxanthine, 12-hydroxyeicosatetraenoic acid). Most of the metabolites in Modules 3 (19 of 23) and 4 (5 of 5) were unknown. Enrichment analysis of module-identified metabolites indicted significantly overrepresented pathways, including long- and medium-chain fatty acids, polyunsaturated fatty acids (n3 and n6), eicosanoids, lysolipid, dipeptides, fatty acid metabolism, and purine metabolism [(hypo) xanthine/inosine-containing pathways]. CONCLUSIONS: We identified two major metabolic signatures: one consisting of lipids, and a second that included dipeptides, polyunsaturated fatty acids, taurine, and xanthine. Metabolites in both groups decreased during the 2008 Beijing Olympics, when air pollution was low, and increased after the Olympics, when air pollution returned to normal (high) levels. https://doi.org/10.1289/EHP3705.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Metaboloma , Deportes , Adulto , Beijing , Femenino , Humanos , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Persona de Mediana Edad
11.
Gene ; 628: 286-294, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-28735727

RESUMEN

The ERBB2 gene encodes a transmembrane tyrosine kinase receptor that belongs to the epidermal growth factor receptor (EGFR) family. ERBB2 plays a pivotal role during heart development and is essential for normal cardiac function, particularly during episodes of cardiac stress. The monoclonal antibody drug trastuzumab is used for the therapy of breast cancers that overexpress ERBB2. The clinical use of trastuzumab is limited by the development of cardiotoxicity in some patients. Inter-individual differences in the expression of ERBB2 in cardiac tissue may impact the risk of cardiotoxicity. In this study, we examined whether DNA methylation status in the proximal promoter region of ERBB2 is associated to variable ERBB2 mRNA and ERBB2 protein expression in human myocardium. Complementary studies with ERBB2 gene reporter constructs and chromatin immunoprecipitation suggest that differential methylation in specific CpG sites modify the binding of Sp1 to the promoter of ERBB2. DNA methylation in the ERBB2 locus may contribute to the variable expression of ERBB2 in human myocardium.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Miocardio/metabolismo , Receptor ErbB-2/genética , Sitios de Unión , Línea Celular , Supervivencia Celular/genética , Islas de CpG , Sitios Genéticos , Humanos , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , Receptor ErbB-2/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional
12.
BMC Med Res Methodol ; 16(1): 172, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931207

RESUMEN

BACKGROUND: Recommender systems have shown tremendous value for the prediction of personalized item recommendations for individuals in a variety of settings (e.g., marketing, e-commerce, etc.). User-based collaborative filtering is a popular recommender system, which leverages an individuals' prior satisfaction with items, as well as the satisfaction of individuals that are "similar". Recently, there have been applications of collaborative filtering based recommender systems for clinical risk prediction. In these applications, individuals represent patients, and items represent clinical data, which includes an outcome. METHODS: Application of recommender systems to a problem of this type requires the recasting a supervised learning problem as unsupervised. The rationale is that patients with similar clinical features carry a similar disease risk. As the "Big Data" era progresses, it is likely that approaches of this type will be reached for as biomedical data continues to grow in both size and complexity (e.g., electronic health records). In the present study, we set out to understand and assess the performance of recommender systems in a controlled yet realistic setting. User-based collaborative filtering recommender systems are compared to logistic regression and random forests with different types of imputation and varying amounts of missingness on four different publicly available medical data sets: National Health and Nutrition Examination Survey (NHANES, 2011-2012 on Obesity), Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT), chronic kidney disease, and dermatology data. We also examined performance using simulated data with observations that are Missing At Random (MAR) or Missing Completely At Random (MCAR) under various degrees of missingness and levels of class imbalance in the response variable. RESULTS: Our results demonstrate that user-based collaborative filtering is consistently inferior to logistic regression and random forests with different imputations on real and simulated data. The results warrant caution for the collaborative filtering for the purpose of clinical risk prediction when traditional classification is feasible and practical. CONCLUSIONS: CF may not be desirable in datasets where classification is an acceptable alternative. We describe some natural applications related to "Big Data" where CF would be preferred and conclude with some insights as to why caution may be warranted in this context.


Asunto(s)
Errores Diagnósticos , Algoritmos , Interpretación Estadística de Datos , Registros Electrónicos de Salud , Humanos , Encuestas Nutricionales , Insuficiencia Renal Crónica/diagnóstico , Sensibilidad y Especificidad , Enfermedades de la Piel/diagnóstico , Resultado del Tratamiento
13.
J Pharm Sci ; 105(6): 2005-2008, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27112290

RESUMEN

Daunorubicin (DAUN) and doxorubicin (DOX) are used to treat a variety of cancers. The use of DAUN and DOX is hampered by the development of cardiotoxicity. Clinical evidence suggests that patients with leukemia and Down syndrome are at increased risk for anthracycline-related cardiotoxicity. Carbonyl reductases and aldo-keto reductases (AKRs) catalyze the reduction of DAUN and DOX into cardiotoxic C-13 alcohol metabolites. Anthracyclines also exert cardiotoxicity by triggering mitochondrial dysfunction. In recent studies, a collection of heart samples from donors with and without Down syndrome was used to investigate determinants for anthracycline-related cardiotoxicity including cardiac daunorubicin reductase activity (DA), carbonyl reductase/AKRs protein expression, mitochondrial DNA content (mtDNA), and AKR7A2 DNA methylation status. In this study, the available demographic, biochemical, genetic, and epigenetic data were integrated through classification and regression trees analysis with the aim of pinpointing the most relevant variables for the synthesis of cardiotoxic daunorubicinol (i.e., DA). Seventeen variables were considered as potential predictors. Leave-one-out-cross-validation was performed for model selection and to estimate the generalization error. The classification and regression trees analysis model and variable importance measures suggest that cardiac mtDNA content, mtDNA(4977) deletion frequency, and AKR7A2 protein content are the most important variables in determining DA.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Cardiotoxinas/metabolismo , Árboles de Decisión , Síndrome de Down/metabolismo , Doxorrubicina/metabolismo , Miocardio/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibióticos Antineoplásicos/efectos adversos , Cardiotoxinas/efectos adversos , Niño , Síndrome de Down/tratamiento farmacológico , Doxorrubicina/efectos adversos , Predicción , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Persona de Mediana Edad , Adulto Joven
14.
Stat Appl Genet Mol Biol ; 15(1): 39-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26910752

RESUMEN

Graphical models have proven to be a valuable tool for connecting genotypes and phenotypes. Structural learning of phenotype-genotype networks has received considerable attention in the post-genome era. In recent years, a dozen different methods have emerged for network inference, which leverage natural variation that arises in certain genetic populations. The structure of the network itself can be used to form hypotheses based on the inferred direct and indirect network relationships, but represents a premature endpoint to the graphical analyses. In this work, we extend this endpoint. We examine the unexplored problem of perturbing a given network structure, and quantifying the system-wide effects on the network in a node-wise manner. The perturbation is achieved through the setting of values of phenotype node(s), which may reflect an inhibition or activation, and propagating this information through the entire network. We leverage belief propagation methods in Conditional Gaussian Bayesian Networks (CG-BNs), in order to absorb and propagate phenotypic evidence through the network. We show that the modeling assumptions adopted for genotype-phenotype networks represent an important sub-class of CG-BNs, which possess properties that ensure exact inference in the propagation scheme. The system-wide effects of the perturbation are quantified in a node-wise manner through the comparison of perturbed and unperturbed marginal distributions using a symmetric Kullback-Leibler divergence. Applications to kidney and skin cancer expression quantitative trait loci (eQTL) data from different mus musculus populations are presented. System-wide effects in the network were predicted and visualized across a spectrum of evidence. Sub-pathways and regions of the network responded in concert, suggesting co-regulation and coordination throughout the network in response to phenotypic changes. We demonstrate how these predicted system-wide effects can be examined in connection with estimated class probabilities for covariates of interest, e.g. cancer status. Despite the uncertainty in the network structure, we demonstrate the system-wide predictions are stable across an ensemble of highly likely networks. A software package, geneNetBP, which implements our approach, was developed in the R programming language.


Asunto(s)
Estudios de Asociación Genética , Genotipo , Modelos Biológicos , Modelos Estadísticos , Fenotipo , Algoritmos , Animales , Teorema de Bayes , Simulación por Computador , Ratones , Distribución Normal , Sitios de Carácter Cuantitativo
15.
Cardiovasc Toxicol ; 16(2): 182-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25962911

RESUMEN

The intracardiac synthesis of anthracycline alcohol metabolites by aldo-keto reductases (AKRs) contributes to the pathogenesis of anthracycline-related cardiotoxicity. AKR7A2 is the most abundant anthracycline reductase in hearts from donors with and without Down syndrome (DS), and its expression varies between individuals (≈tenfold). We investigated whether DNA methylation impacts AKR7A2 expression in hearts from donors with (n = 11) and without DS (n = 30). Linear models were used to test for associations between methylation status and cardiac AKR7A2 expression. In hearts from donors without DS, DNA methylation status at CpG site -865 correlated with AKR7A2 mRNA (Pearson's regression coefficient, r = -0.4051, P = 0.0264) and AKR7A2 protein expression (r = -0.5818, P = 0.0071). In heart tissue from donors with DS, DNA methylation status at CpG site -232 correlated with AKR7A2 protein expression (r = 0.8659, P = 0.0025). Multiple linear regression modeling revealed that methylation at several CpG sites is associated with the synthesis of cardiotoxic daunorubicinol. AKR7A2 methylation status in lymphoblastoid cell lines from donors with and without DS was examined to explore potential parallelisms between cardiac tissue and lymphoid cells. These results suggest that DNA methylation impacts AKR7A2 expression and the synthesis of cardiotoxic daunorubicinol.


Asunto(s)
Aldehído Reductasa/metabolismo , Antraciclinas/metabolismo , Metilación de ADN/fisiología , Síndrome de Down/enzimología , Miocardio/enzimología , Anciano , Síndrome de Down/diagnóstico , Femenino , Corazón/fisiología , Humanos , Masculino , Persona de Mediana Edad
16.
Front Physiol ; 3: 227, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754537

RESUMEN

Cancer is a major health problem with high mortality rates. In the post-genome era, investigators have access to massive amounts of rapidly accumulating high-throughput data in publicly available databases, some of which are exclusively devoted to housing Cancer data. However, data interpretation efforts have not kept pace with data collection, and gained knowledge is not necessarily translating into better diagnoses and treatments. A fundamental problem is to integrate and interpret data to further our understanding in Cancer Systems Biology. Viewing cancer as a network provides insights into the complex mechanisms underlying the disease. Mathematical and statistical models provide an avenue for cancer network modeling. In this article, we review two widely used modeling paradigms: deterministic metabolic models and statistical graphical models. The strength of these approaches lies in their flexibility and predictive power. Once a model has been validated, it can be used to make predictions and generate hypotheses. We describe a number of diverse applications to Cancer Biology, including, the system-wide effects of drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes, and survival predictions.

17.
J Lipid Res ; 53(6): 1163-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22498810

RESUMEN

A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.


Asunto(s)
HDL-Colesterol/genética , Hibridación Genética , Biología de Sistemas/métodos , Secuencia de Aminoácidos , Animales , Cromosomas de los Mamíferos/genética , Perros , Femenino , Genómica , Humanos , Lipasa/química , Lipasa/genética , Masculino , Ratones , Datos de Secuencia Molecular , Sitios de Carácter Cuantitativo/genética , Ratas
18.
PLoS Comput Biol ; 8(4): e1002458, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496633

RESUMEN

Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: "What can causal networks tell us about metabolic pathways?". Using data from an Arabidopsis Bay[Formula: see text]Sha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies.


Asunto(s)
Algoritmos , Gráficos por Computador , Metaboloma/fisiología , Modelos Biológicos , Proteoma/metabolismo , Transducción de Señal/fisiología , Animales , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...