Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 248: 114314, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436258

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) comprise a diverse class of chemicals used in industrial processes, consumer products, and fire-fighting foams which have become environmental pollutants of concern due to their persistence, ubiquity, and associations with adverse human health outcomes, including in pregnant persons and their offspring. Multiple PFAS are associated with adverse liver outcomes in adult humans and toxicological models, but effects on the developing liver are not fully described. Here we performed transcriptomic analyses in the mouse to investigate the molecular mechanisms of hepatic toxicity in the dam and its fetus after exposure to two different PFAS, perfluorooctanoic acid (PFOA) and its replacement, hexafluoropropylene oxide-dimer acid (HFPO-DA, known as GenX). Pregnant CD-1 mice were exposed via oral gavage from embryonic day (E) 1.5-17.5 to PFOA (0, 1, or 5 mg/kg-d) or GenX (0, 2, or 10 mg/kg-d). Maternal and fetal liver RNA was isolated (N = 5 per dose/group) and the transcriptome analyzed by Affymetrix Array. Differentially expressed genes (DEG) and differentially enriched pathways (DEP) were obtained. DEG patterns were similar in maternal liver for 5 mg/kg PFOA, 2 mg/kg GenX, and 10 mg/kg GenX (R2: 0.46-0.66). DEG patterns were similar across all 4 dose groups in fetal liver (R2: 0.59-0.81). There were more DEGs in fetal liver compared to maternal liver at the low doses for both PFOA (fetal = 69, maternal = 8) and GenX (fetal = 154, maternal = 93). Upregulated DEPs identified across all groups included Fatty Acid Metabolism, Peroxisome, Oxidative Phosphorylation, Adipogenesis, and Bile Acid Metabolism. Transcriptome-phenotype correlation analyses demonstrated > 1000 maternal liver DEGs were significantly correlated with maternal relative liver weight (R2 >0.92). These findings show shared biological pathways of liver toxicity for PFOA and GenX in maternal and fetal livers in CD-1 mice. The limited overlap in specific DEGs between the dam and fetus suggests the developing liver responds differently than the adult liver to these chemical stressors. This work helps define mechanisms of hepatic toxicity of two structurally unique PFAS and may help predict latent consequences of developmental exposure.


Asunto(s)
Fluorocarburos , Adulto , Humanos , Femenino , Embarazo , Ratones , Animales , Fluorocarburos/toxicidad , Óxidos , Caprilatos/toxicidad , Feto , Polímeros
2.
Front Toxicol ; 4: 881347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548680

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants that have been associated with adverse pregnancy outcomes in women and experimental research models. Adverse developmental and reproductive outcomes have been investigated for relatively few PFAS, and such studies are not scalable to address the thousands of unique chemical structures. As the placenta has been reported as a PFAS target tissue, the human placental trophoblast JEG-3 cell line was employed in a high-throughput toxicity screen (HTTS) to evaluate the effects of 42 unique PFAS on viability, proliferation, and mitochondrial membrane potential (MMP). HTTS concentration-response curve fitting determined EC50 values for 79% of tested compounds for at least one of the three endpoints. Trophoblast migratory potential was evaluated for a subset of six prioritized PFAS using a scratch wound assay. Migration, measured as the percent of wound closure after 72 h, was most severely inhibited by exposure to 100 µM perfluorooctanoic acid (PFOA; 72% closure), perfluorooctanesulfonic acid (PFOS; 57% closure), or ammonium perfluoro-2-methyl-3-oxahexanoate (GenX; 79% closure). PFOA and GenX were subsequently evaluated for disrupted expression of 46 genes reported to be vital to trophoblast health. Disrupted regulation of oxidative stress was suggested by altered expression of GPEX1 (300 µM GenX and 3 µM GenX), GPER1 (300 µM GenX), and SOD1 and altered cellular response to xenobiotic stress was indicated by upregulation of the placental efflux transporter, ABCG2 (300 µM GenX, 3 µM GenX, and 100 µM PFOA). These findings suggest the placenta is potentially a direct target of PFAS exposure and indicate that trophoblast cell gene expression and function are disrupted at PFAS levels well below the calculated cytotoxicity threshold (EC50). Future work is needed to determine the mechanism(s) of action of PFAS towards placental trophoblasts.

3.
Emerg Contam ; 7: 219-235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35097227

RESUMEN

BACKGROUND: Perfluorooctanoic acid (PFOA) is an environmental contaminant associated with adverse metabolic outcomes in developmentally exposed human populations and mouse models. Hexafluoropropylene oxide-dimer acid (HFPO-DA, commonly called GenX) has replaced PFOA in many industrial applications in the U.S. and Europe and has been measured in global water systems from <1 to 9350 ng/L HFPO-DA. Health effects data for GenX are lacking. OBJECTIVE: Determine the effects of gestational exposure to GenX on offspring weight gain trajectory, adult metabolic health, liver pathology and key adipose gene pathways in male and female CD-1 mice. METHODS: Daily oral doses of GenX (0.2, 1.0, 2.0 mg/kg), PFOA (0.1, 1.0 mg/kg), or vehicle control were administered to pregnant mice (gestation days 1.5-17.5). Offspring were fed a high- or low-fat diet (HFD or LFD) at weaning until necropsy at 6 or 18 weeks, and metabolic endpoints were measured over time. PFOA and GenX serum and urine concentrations, weight gain, serum lipid parameters, body mass composition, glucose tolerance, white adipose tissue gene expression, and liver histopathology were evaluated. RESULTS: Prenatal exposure to GenX led to its accumulation in the serum and urine of 5-day old pups (P = 0.007, P < 0.001), which was undetectable by weaning. By 18 weeks of age, male mice fed LFD in the 2.0 mg/kg GenX group displayed increased weight gain (P < 0.05), fat mass (P = 0.016), hepatocellular microvesicular fatty change (P = 0.015), and insulin sensitivity (P = 0.014) in comparison to control males fed LFD. Female mice fed HFD had a significant increase in hepatocyte single cell necrosis in 1.0 mg/kg GenX group (P = 0.022) and 1.0 mg/kg PFOA group (P = 0.003) compared to control HFD females. Both sexes were affected by gestational GenX exposure; however, the observed phenotype varied between sex with males displaying more characteristics of metabolic disease and females exhibiting liver damage in response to the gestational exposure. CONCLUSIONS: Prenatal exposure to 1 mg/kg GenX and 1 mg/kg PFOA induces adverse metabolic outcomes in adult mice that are diet- and sex-dependent. GenX also accumulated in pup serum, suggesting that placental and potentially lactational transfer are important exposure routes for GenX.

4.
Toxicology ; 443: 152565, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32861749

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous drinking water contaminants of concern due to mounting evidence implicating adverse health outcomes associated with exposure, including reduced kidney function, metabolic syndrome, thyroid disruption, and adverse pregnancy outcomes. PFAS have been produced in the U.S. since the 1940s and now encompass a growing chemical family comprised of diverse chemical moieties, yet the toxicological effects have been studied for relatively few compounds. Critically, exposures to some PFAS in utero are associated with adverse outcomes for both mother and offspring, such as hypertensive disorders of pregnancy (HDP), including preeclampsia, and low birth weight. Given the relationship between HDP, placental dysfunction, adverse health outcomes, and increased risk for chronic diseases in adulthood, the role of both developmental and lifelong exposure to PFAS likely contributes to disease risk in complex ways. Here, evidence for the role of some PFAS in disrupted thyroid function, kidney disease, and metabolic syndrome is synthesized with an emphasis on the placenta as a critical yet understudied target of PFAS and programming agent of adult disease. Future research efforts must continue to fill the knowledge gap between placental susceptibility to environmental exposures like PFAS, subsequent perinatal health risks for both mother and child, and latent health effects in adult offspring.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Intercambio Materno-Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Exposición Materna , Placenta , Embarazo , Medición de Riesgo
5.
Environ Toxicol ; 35(12): 1395-1405, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32790152

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), a class of environmental contaminants, have been detected in human placenta and cord blood. The mechanisms driving PFAS-induced effects on the placenta and adverse pregnancy outcomes are not well understood. This study investigated the impact of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and a replacement PFAS known as hexafluoropropylene oxide dimer acid (HFPO-DA, tradename GenX) on placental trophoblasts in vitro. Several key factors were addressed. First, PFAS levels in cell culture reagents at baseline were quantified. Second, the role of supplemental media serum in intracellular accumulation of PFAS in a human trophoblast (JEG3) cell line was established. Finally, the impact of PFAS on the expression of 96 genes involved in proper placental function in JEG3 cells was evaluated. The results revealed that serum-free media (SFM) contained no detectable PFAS. In contrast, fetal bovine serum-supplemented media (SSM) contained PFNA, PFUdA, PFTrDA, and 6:2 FTS, but these PFAS were not detected internally in cells. Intracellular accumulation following 24 hr treatments was significantly higher when cultured in SFM compared to SSM for PFOS and PFOA, but not HFPO-DA. Treatment with PFAS was associated with gene expression changes (n = 32) in pathways vital to placental function, including viability, syncytialization, inflammation, transport, and invasion/mesenchymal transition. Among the most robust PFAS-associated changes were those observed in the known apoptosis-related genes, BAD and BAX. These results suggest a complex relationship between PFAS, in vitro culture conditions, and altered expression of key genes necessary for proper placentation.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Expresión Génica/efectos de los fármacos , Placenta/efectos de los fármacos , Suero/química , Trofoblastos/efectos de los fármacos , Ácidos Alcanesulfónicos/sangre , Ácidos Alcanesulfónicos/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Bioacumulación/efectos de los fármacos , Bioacumulación/genética , Caprilatos/sangre , Caprilatos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Medio de Cultivo Libre de Suero , Femenino , Fluorocarburos/sangre , Fluorocarburos/metabolismo , Humanos , Placenta/metabolismo , Embarazo , ARN Mensajero/genética , Trofoblastos/metabolismo
6.
Environ Health Perspect ; 128(2): 27006, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32074459

RESUMEN

BACKGROUND: Perfluorooctanoic acid (PFOA) is a poly- and perfluoroalkyl substance (PFAS) associated with adverse pregnancy outcomes in mice and humans, but little is known regarding one of its replacements, hexafluoropropylene oxide dimer acid (HFPO-DA, referred to here as GenX), both of which have been reported as contaminants in drinking water. OBJECTIVES: We compared the toxicity of PFOA and GenX in pregnant mice and their developing embryo-placenta units, with a specific focus on the placenta as a hypothesized target. METHODS: Pregnant CD-1 mice were exposed daily to PFOA (0, 1, or 5mg/kg) or GenX (0, 2, or 10mg/kg) via oral gavage from embryonic day (E) 1.5 to 11.5 or 17.5 to evaluate exposure effects on the dam and embryo-placenta unit. Gestational weight gain (GWG), maternal clinical chemistry, maternal liver histopathology, placental histopathology, embryo weight, placental weight, internal chemical dosimetry, and placental thyroid hormone levels were determined. RESULTS: Exposure to GenX or PFOA resulted in increased GWG, with increase in weight most prominent and of shortest latency with 10mg/kg/d GenX exposure. Embryo weight was significantly lower after exposure to 5mg/kg/d PFOA (9.4% decrease relative to controls). Effect sizes were similar for higher doses (5mg/kg/d PFOA and 10mg/kg/d GenX) and lower doses (1mg/kg/d PFOA and 2mg/kg/d GenX), including higher maternal liver weights, changes in liver histopathology, higher placental weights and embryo-placenta weight ratios, and greater incidence of placental abnormalities relative to controls. Histopathological features in placentas suggested that PFOA and GenX may exhibit divergent mechanisms of toxicity in the embryo-placenta unit, whereas PFOA- and GenX-exposed livers shared a similar constellation of adverse pathological features. CONCLUSIONS: Gestational exposure to GenX recapitulated many documented effects of PFOA in CD-1 mice, regardless of its much shorter reported half-life; however, adverse effects toward the placenta appear to have compound-specific signatures. https://doi.org/10.1289/EHP6233.


Asunto(s)
Caprilatos/toxicidad , Fluorocarburos/toxicidad , Hidrocarburos Fluorados/toxicidad , Placenta/efectos de los fármacos , Pruebas de Toxicidad , Animales , Femenino , Ratones , Neprilisina , Embarazo/efectos de los fármacos
7.
Environ Pollut ; 242(Pt A): 894-904, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30373035

RESUMEN

Perfluoroalkyl substances (PFAS) are a diverse class of manufactured compounds used in a wide range of industrial processes and consumer products and have been detected in human serum worldwide. Previous cross-sectional and cohort studies in humans have suggested exposure to PFAS is associated with a wide array of chronic diseases, including endocrine disruption, developmental health effects, cancer and metabolic changes. We examined the associations between a panel of eight PFAS and indicators of thyroid disruption, kidney function, and body mass index (BMI), all of which were measured at repeated time points (1990-2008) over the course of the study. Participants (N = 210) were selected from the Fernald Community Cohort based on household water supply from a PFAS-contaminated aquifer. In adjusted repeated measures models, we observed several notable associations between serum PFAS and thyroid hormones as well as kidney function as measured by estimated glomerular filtration rate (eGFR). An interquartile (IQR) increase in serum PFOS was associated with a 9.75% (95% CI = 1.72, 18.4) increase in thyroid stimulating hormone. An IQR increase in serum PFNA, PFHxS, and PFDeA was associated with a -1.61% (95% CI = -3.53, -0.59), -2.06% (95% CI = -3.53, -0.59), and -2.20% (95% CI = -4.25, -0.14) change in eGFR, respectively. On the other hand, an IQR increase in serum Me-PFOSA was associated with a 1.53% (95% CI = 0.34, 2.73) increase in eGFR. No significant associations with BMI and serum PFAS were noted. Our findings are in agreement with previous reports that serum PFAS are associated with altered kidney and thyroid function.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Fluorocarburos/sangre , Hormonas Tiroideas/sangre , Ácidos Alcanesulfónicos/sangre , Índice de Masa Corporal , Caprilatos/sangre , Estudios de Cohortes , Estudios Transversales , Disruptores Endocrinos/sangre , Contaminantes Ambientales/sangre , Humanos , Tirotropina
8.
Neurosci Biobehav Rev ; 55: 184-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25964215

RESUMEN

Early social behaviors like juvenile play are important for normal cognitive and social development. Deficits in these behaviors are associated with neurodevelopmental disorders, such as autism. Rat juvenile rough-and-tumble play is a useful behavioral biomarker of neurodevelopment, and is sensitive to chemical factors such as pre and neonatal hormones. Despite a rich body of literature characterizing hormonal programming of rodent juvenile play, the physiological mechanisms that regulate the organization of play behavior are not well characterized. Synthesizing results to understand the role of endocrine signaling in the development of play behavior remains difficult due to methodological inconsistency across studies. In this review, we synthesize what is known about hormonal mechanisms programming play, advocate standardized protocols for investigating rat play, and identify key areas where future research is needed. A synthetic understanding of the relationship between endocrine signaling and behavioral programming will improve our ability to understand the development and onset of neurodevelopmental disorders in humans and ultimately will help prevent these devastating conditions.


Asunto(s)
Hormonas/metabolismo , Trastornos del Neurodesarrollo , Transducción de Señal/fisiología , Conducta Social , Investigación Biomédica Traslacional , Animales , Animales Recién Nacidos , Hormonas/uso terapéutico , Humanos , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/terapia , Ratas , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...