Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(12): 3608-3622, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38010428

RESUMEN

Small, single-domain protein scaffolds are compelling sources of molecular binding ligands with the potential for efficient physiological transport, modularity, and manufacturing. Yet, mini-proteins require a balance between biophysical robustness and diversity to enable new functions. We tested the developability and evolvability of millions of variants of 43 designed libraries of synthetic 40-amino acid ßαßß proteins with diversified sheet, loop, or helix paratopes. We discovered a scaffold library that yielded hundreds of binders to seven targets while exhibiting high stability and soluble expression. Binder discovery yielded 6-122 nM affinities without affinity maturation and Tms averaging ≥78 °C. Broader ßαßß libraries exhibited varied developability and evolvability. Sheet paratopes were the most consistently developable, and framework 1 was the most evolvable. Paratope evolvability was dependent on target, though several libraries were evolvable across many targets while exhibiting high stability and soluble expression. Select ßαßß proteins are strong starting points for engineering performant binders.


Asunto(s)
Biblioteca de Péptidos , Proteínas , Ligandos , Proteínas/genética , Proteínas/química
2.
J Cell Physiol ; 237(5): 2503-2515, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35224740

RESUMEN

Epithelial-mesenchymal transition (EMT) is a physiological process that is essential during embryogenesis and wound healing and also contributes to pathologies including fibrosis and cancer. EMT is characterized by marked gene expression changes, loss of cell-cell contacts, remodeling of the cytoskeleton, and acquisition of enhanced motility. In the late stages of EMT, cells can exhibit myofibroblast-like properties with enhanced expression of the mesenchymal protein marker α-smooth muscle actin and contractile activity. Transforming growth factor (TGF)-ß1 is a well-known inducer of EMT and it activates a plethora of signaling cascades including extracellular signal-regulated kinase (ERK). Previous reports have demonstrated a role for ERK signaling in the early stages of EMT, but the molecular impacts of ERK signaling on the late stages of EMT are still unknown. Here, we found that inhibition of the phosphorylation of ERK enhances focal adhesions, stress fiber formation, cell contractility, and gene expression changes associated with TGFß1-induced EMT in mammary epithelial cells. These effects are mediated in part by the phosphorylation state and subcellular localization of myocardin-related transcription factor-A. These findings indicate that the intricate crosstalk between signaling cascades plays an important role in regulating the progression of EMT and suggests new approaches to control EMT processes.


Asunto(s)
Transición Epitelial-Mesenquimal , Quinasas MAP Reguladas por Señal Extracelular , Transactivadores/metabolismo , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...