Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nano Lett ; 24(8): 2553-2560, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363554

RESUMEN

Molecular electronics targets tiny devices exploiting the electronic properties of the molecular orbitals, which can be tailored and controlled by the chemical structure and configuration of the molecules. Many functional devices have been experimentally demonstrated; however, these devices were operated in the low-frequency domain (mainly dc to MHz). This represents a serious limitation for electronic applications, although molecular devices working in the THz regime have been theoretically predicted. Here, we experimentally demonstrate molecular THz switches at room temperature. The devices consist of self-assembled monolayers of molecules bearing two conjugated moieties coupled through a nonconjugated linker. These devices exhibit clear negative differential conductance behaviors (peaks in the current-voltage curves), as confirmed by ab initio simulations, which were reversibly suppressed under illumination with a 30 THz wave. We analyze how the THz switching behavior depends on the THz wave properties (power and frequency), and we benchmark that these molecular devices would outperform actual THz detectors.

2.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191066

RESUMEN

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Asunto(s)
G-Cuádruplex , Neoplasias , Fotoquimioterapia , Animales , ADN/metabolismo , Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo , Fármacos Fotosensibilizantes/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Fotoquimioterapia/métodos
3.
Chem Asian J ; 18(6): e202300014, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36752187

RESUMEN

Produced at ton scale, vat dyes are major environmental pollutants generated by the textile industry. However, they represent ideal and accessible candidates for chemical upcycling since they are usually composed of large π-conjugated scaffolds. Based on the valorization of "old" products, waste or even contaminant into high-added value goods, this concept can be easily transposed to the laboratories. As a contribution to the current environmental and ecological transition, we demonstrate herein the valorization/upcycling of wastewaters generated during the dyeing procedure. To do so, the reduced (leuco) form of vat violet 10, also known as isoviolanthrone, was functionalized to afford a readily soluble derivative that was subsequently and successfully used as active material in operating solution processed light-emitting electrochemical cells, that is, from textile dyeing to high-tech application.

4.
Commun Chem ; 5(1): 142, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697939

RESUMEN

Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.

5.
J Phys Chem B ; 125(30): 8572-8580, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34291941

RESUMEN

Singlet-triplet interconversions (intersystem crossing, ISC) in organic molecules are at the basis of many important processes in cutting-edge photonic applications (organic light-emitting devices, photodynamic therapy, etc.). Selection rules for these transitions are mainly governed by the spin-orbit coupling (SOC) phenomenon. Although the SOC relies on complex relativistic phenomena, theoreticians have, with time, developed increasingly sophisticated and efficient approaches to gain access to a satisfactory evaluation of its magnitude. However, recent works have highlighted the remarkable and somehow unexpected efficiency of dimers of small conjugated molecules in terms of ISC quantum yields, whose origin has not been completely investigated. In this work, we bring a coupled experimental and theoretical analysis of the origin of the unusually large ISC efficiency on a series of such dimers that differ by their nature (covalent or supramolecular). We show that considering the dynamical nature of the SOC, and especially its dependence on angular orientations between the dimer subunits sometimes overlooked in the literature, it is necessary to rationalize some counterintuitive experimental observations. This combined experimental and theoretical work paves the way for new molecular engineering rules for SOC control.


Asunto(s)
Fotoquimioterapia , Dimerización
6.
ChemSusChem ; 14(17): 3622-3631, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34111333

RESUMEN

Organic solar cells are approaching power conversion efficiencies of other thin-film technologies. However, in order to become truly market competitive, the still substantial voltage losses need to be reduced. Here, the synthesis and characterization of four novel arylamine-based push-pull molecular donors was described, two of them exhibiting a methyl group at the para-position of the external phenyl ring of the arylamine block. Assessing the charge-transfer state properties and the effects of methylation on the open-circuit voltage of the device showed that devices based on methylated versions of the molecular donors exhibited reduced voltage losses due to decreased non-radiative recombination. Modelling suggested that methylation resulted in a tighter interaction between donor and acceptor molecules, turning into a larger oscillator strength to the charge-transfer states, thereby ensuing reduced non-radiative decay rates.

7.
J Org Chem ; 86(8): 5901-5907, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33793231

RESUMEN

The pallado-catalyzed cyanation of benzothioxanthene imide (BTXI) derivatives is explored herein. Once optimized on the monobromo BTXI, mild reaction conditions were successfully applied to the dibromo derivative affording two regioisomers that have been isolated and structurally solved. Additional hydrogen-deuterium exchange experiments were carried out to support a proposed mechanism involving the formation of a five-membered palladacycle intermediate in the bay area. As well as impacting the structural, photo physical and electrochemical properties of the BTXI core, nitrile moieties were successfully used as orthogonal protecting groups, thus opening doors to new design principles.


Asunto(s)
Nitrilos , Paladio , Catálisis , Hidrógeno
8.
Opt Lett ; 46(4): 845-848, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577526

RESUMEN

Second-order nonlinear optics is the base for a large variety of devices aimed at the active manipulation of light. However, physical principles restrict its occurrence to non-centrosymmetric, anisotropic matter. This significantly limits the number of base materials exhibiting nonlinear optics. Here, we show that embedding chromophores in an array of conical channels 13 nm across in monolithic silica results in mesoscopic anisotropic matter and thus in a hybrid material showing second-harmonic generation. This nonlinear optics is compared to the one achieved in corona-poled polymer films containing the identical chromophores. It originates in the confinement-induced orientational order of the elongated guest molecules in the nanochannels. This leads to a non-centrosymmetric dipolar order and hence to a nonlinear light-matter interaction on the sub-wavelength, single-pore scale. Our study demonstrates that the advent of large-scale, self-organized nanoporosity in monolithic solids along with the confinement-controllable orientational order of chromophores at the single-pore scale provides a reliable and accessible tool to design materials with a nonlinear meta-optics.

9.
Chem Commun (Camb) ; 56(70): 10131-10134, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812572

RESUMEN

The synthesis of benzothioxanthene imide based dimers is reported herein. Subtle chemical modifications were carried out and their impact on the optical and electrochemical properties was investigated for a better structure-property relationship analysis. The icing on the cake was that these new structures were used as light emitting materials for the fabrication and demonstration of the first BTXI-based OLEDs.

10.
Chemistry ; 26(69): 16422-16433, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701173

RESUMEN

π-Conjugated push-pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C60 . Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size.

11.
Phys Chem Chem Phys ; 22(22): 12373-12381, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309827

RESUMEN

In spite of their remarkable luminescence properties, benzothioxanthene imide (BTXI, an imide containing rylene chromophores) derivatives have been largely overlooked compared to their perylene bisimide and naphthalene bisimide counterparts. Thus, their detailed photophysics are much less understood. In this paper, we show how relatively simple structural modifications of the backbone of BTXIs can lead to impressive variations in their inter-system crossing kinetics. Thus, through rational engineering of their structure, it is possible to obtain a triplet formation quantum yield that reaches unity, making BTXI a promising class of compounds for triplet-based applications (photodynamic therapy, electroluminescence, etc.).

12.
Sci Rep ; 10(1): 3262, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094356

RESUMEN

Usually considered as a byproduct, the 1,6-dibrominated PDI has rarely been functionalized for the preparation of electro-active conjugated molecules, particularly in the field of organic photovoltaics. In light of the literature, one can ask oneself: Does a 1,7-isomer based functional molecule systematically perform better than its 1,6-analogue? To answer this question, we report herein the synthesis and direct comparison of two indeno[1,2-b]thiophene (IDT) end-capped perylene diimide regioisomers (PDI) (1,6 and 1,7) used as non-fullerene acceptors in organic solar cells. It turned out that in our case, ie, when blended with the well-known PTB7-Th donor polymer, higher performance was reached for devices made with the 1,6-analogue.

13.
Chem Rec ; 19(6): 1123-1130, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30828956

RESUMEN

This mini review aims at taking stock of some arylamine based push-pull chromophores developed in the "Systèmes Conjugués Linéaires" (SCL) group at the University of Angers. Selected examples highlight more than a decade of design principles and strategies implemented to afford simple and accessible soluble molecular donors as active material for organic solar cells (OSCs).

14.
Molecules ; 23(4)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677127

RESUMEN

The synthesis and preliminary evaluation as donor material for organic photovoltaics of the poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) is reported herein. Prepared via homogeneous and heterogeneous direct (hetero)arylation polymerization (DHAP), through the use of different catalytic systems, conjugated polymers with comparable molecular weights were obtained. The polymers exhibited strong optical absorption out to 700 nm as thin-films and had appropriate electronic energy levels for use as a donor with PC70BM. Bulk heterojunction solar cells were fabricated giving power conversion efficiencies above 4%. These results reveal the potential of such polymers prepared in only three steps from affordable and commercially available starting materials.


Asunto(s)
Fluorenos/química , Polimerizacion , Pirroles/química , Microscopía de Fuerza Atómica , Estructura Molecular , Polímeros/química , Energía Solar , Análisis Espectral
15.
Nanoscale ; 10(4): 1613-1616, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29327013

RESUMEN

The electrochemical and spectroelectrochemical studies of thienylene vinylene (TV) derivatives in the immobilized state are compared with the ones obtained in solution. The results highlight the exaltation of the dimerization process onto TV-based self-assembled monolayers, in which the π interaction is maintained even after 75% dilution.

16.
Genetics ; 207(3): 1167-1180, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28971957

RESUMEN

Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Sitios de Carácter Cuantitativo , Zea mays/genética , Biomasa , Genes Dominantes , Variación Genética , Endogamia , Carácter Cuantitativo Heredable , Zea mays/crecimiento & desarrollo
17.
G3 (Bethesda) ; 7(11): 3649-3657, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28963164

RESUMEN

Identification of quantitative trait loci (QTL) involved in the variation of hybrid value is of key importance for cross-pollinated species such as maize (Zea mays L.). In a companion paper, we illustrated a new QTL mapping population design involving a factorial mating between two multiparental segregating populations. Six biparental line populations were developed from four founder lines in the Dent and Flint heterotic groups. They were crossed to produce 951 hybrids and evaluated for silage performances. Previously, a linkage analysis (LA) model that assumes each founder line carries a different allele was used to detect QTL involved in General and Specific Combining Abilities (GCA and SCA, respectively) of hybrid value. This previously introduced model requires the estimation of numerous effects per locus, potentially affecting QTL detection power. Using the same design, we compared this "Founder alleles" model to two more parsimonious models, which assume that (i) identity in state at SNP alleles from the same heterotic group implies identity by descent (IBD) at linked QTL ("SNP within-group" model) or (ii) identity in state implies IBD, regardless of population origin of the alleles ("Hybrid genotype" model). This last model assumes biallelic QTL with equal effects in each group. It detected more QTL on average than the two other models but explained lower percentages of variance. The "SNP within-group" model appeared to be a good compromise between the two other models. These results confirm the divergence between the Dent and Flint groups. They also illustrate the need to adapt the QTL detection model to the complexity of the allelic variation, which depends on the trait, the QTL, and the divergence between the heterotic groups.


Asunto(s)
Biomasa , Hibridación Genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo , Zea mays/genética , Mapeo Cromosómico/métodos , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Zea mays/crecimiento & desarrollo
18.
Sci Rep ; 7(1): 8317, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814729

RESUMEN

The synthesis of a molecule constituted of two diarylamine-based push-pull chromophores covalently linked via their nitrogen atom is described. Comparison of the electronic properties with the parent monomer shows that dimerization has negligible influence on the electronic properties of the molecule but exerts a dramatic impact on the capacity of the material to self-reorganize. Application of thermal annealing to thin films induces the crystallization under original morphologies, a process accompanied by a partial bleaching of the absorption in the visible range and by a huge increase of hole-mobility. X-ray diffraction data on single crystals reveal the presence of π-stacked organization with a non-centrosymmetric co-facial arrangement of the dipoles which leads to intrinsic 2nd order bulk NLO properties of thin films as evidenced by second harmonic generation under 800 nm laser light. The implications of this thermally induced crystallization on the photovoltaic properties of the material are discussed on the basis of preliminary results obtained on simple bilayer organic solar cells.

19.
Chemistry ; 23(26): 6277-6281, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28301059

RESUMEN

Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumping from 0.4 to about 2.0 % in air-processed poly(3-hexylthiophene)-based devices, thus highlighting the key role of enantiopurity in the photovoltaic properties.

20.
Org Lett ; 18(7): 1582-5, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27003243

RESUMEN

Small push-pull molecules were synthesized in high yields by connecting a N-methyl or N-phenyl substituted thieno[2,3-b]indole electron-donating block directly to a 2,2-dicyanovinyl or (1-(dicyanomethylene)-3-oxo-1-inden-2-ylidene)methyl electron-withdrawing group. The effects of the N-substitution on thieno[2,3-b]indole and the nature of the electron-accepting group on the electrochemical, optical, and charge-transport properties were investigated by cyclic voltammetry, UV-vis spectroscopy, and the space-charge-limited current method, respectively. These results, together with the 1% power conversion efficiency of a bilayer solar cell prepared with the smallest compound of the series, show the potential of thieno[2,3-b]indole for organic electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...