Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 360, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519711

RESUMEN

Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.


Asunto(s)
Microbiota , Micorrizas , Plantones , Árboles/microbiología , Micorrizas/fisiología , Suelo
2.
Front Public Health ; 11: 1161943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841702

RESUMEN

The Internet of Things (IoT) and Artificial Intelligence (AI) are promising technologies that can help make the health system more efficient, which concurrently can be particularly useful to help maintain a high quality of life for older adults, especially in light of healthcare staff shortage. Many health issues are challenging to manage both by healthcare staff and policymakers. They have a negative impact on older adults and their families and are an economic burden to societies around the world. This situation is particularly critical for older adults, a population highly vulnerable to diseases that needs more consideration and care. It is, therefore, crucial to improve diagnostic and management as well as proposed prevention strategies to enhance the health and quality of life of older adults. In this study, we focus on detecting symptoms in early stages of diseases to prevent the deterioration of older adults' health and avoid complications. We focus on digestive and urinary system disorders [mainly the Urinary Tract Infection (UTI) and the Irritable Bowel Syndrome (IBS)] that are known to affect older adult populations and that are detrimental to their health and quality of life. Our proposed approach relies on unobtrusive IoT and change point detections algorithms to help follow older adults' health status daily. The approach monitors long-term behavior changes and detects possible changes in older adults' behavior suggesting early onsets or symptoms of IBS and UTI. We validated our approach with medical staff reports and IoT data collected in the residence of 16 different older adults during periods ranging from several months to a few years. Results are showing that our proposed approach can detect changes associated to symptoms of UTI and IBS, which were confirmed with observations and testimonies from the medical staff.


Asunto(s)
Internet de las Cosas , Síndrome del Colon Irritable , Humanos , Anciano , Inteligencia Artificial , Calidad de Vida , Cuartos de Baño
3.
Polar Biol ; 46(9): 837-848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589013

RESUMEN

The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-023-03164-2.

4.
Proc Biol Sci ; 290(2002): 20230511, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37403509

RESUMEN

The slow-fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow-fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow-fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow-fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow-fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.


Asunto(s)
Rasgos de la Historia de Vida , Reproducción , Humanos , Animales , Mamíferos , Aves
5.
New Phytol ; 236(2): 671-683, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751540

RESUMEN

Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.


Asunto(s)
Micobioma , Micorrizas , Micorrizas/genética , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo
6.
iScience ; 25(6): 104385, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620427

RESUMEN

Critical transition theory suggests that complex systems should experience increased temporal variability just before abrupt state changes. We tested this hypothesis in 763 patients on long-term hemodialysis, using 11 biomarkers collected every two weeks and all-cause mortality as a proxy for critical transitions. We find that variability-measured by coefficients of variation (CVs)-increases before death for all 11 clinical biomarkers, and is strikingly synchronized across all biomarkers: the first axis of a principal component analysis on all CVs explains 49% of the variance. This axis then generates powerful predictions of mortality (HR95 = 9.7, p < 0.0001, where HR95 is a scale-invariant metric of hazard ratio; AUC up to 0.82) and starts to increase markedly ∼3 months prior to death. Our results provide an early warning sign of physiological collapse and, more broadly, a quantification of joint system dynamics that opens questions of how system modularity may break down before critical transitions.

7.
PLoS One ; 17(3): e0262376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271575

RESUMEN

Weather and land use can significantly impact mosquito abundance and presence, and by consequence, mosquito-borne disease (MBD) dynamics. Knowledge of vector ecology and mosquito species response to these drivers will help us better predict risk from MBD. In this study, we evaluated and compared the independent and combined effects of weather and land use on mosquito species occurrence and abundance in Eastern Ontario, Canada. Data on occurrence and abundance (245,591 individuals) of 30 mosquito species were obtained from mosquito capture at 85 field sites in 2017 and 2018. Environmental variables were extracted from weather and land use datasets in a 1-km buffer around trapping sites. The relative importance of weather and land use on mosquito abundance (for common species) or occurrence (for all species) was evaluated using multivariate hierarchical statistical models. Models incorporating both weather and land use performed better than models that include weather only for approximately half of species (59% for occurrence model and 50% for abundance model). Mosquito occurrence was mainly associated with temperature whereas abundance was associated with precipitation and temperature combined. Land use was more often associated with abundance than occurrence. For most species, occurrence and abundance were positively associated with forest cover but for some there was a negative association. Occurrence and abundance of some species (47% for occurrence model and 88% for abundance model) were positively associated with wetlands, but negatively associated with urban (Culiseta melanura and Anopheles walkeri) and agriculture (An. quadrimaculatus, Cs. minnesotae and An. walkeri) environments. This study provides predictive relationships between weather, land use and mosquito occurrence and abundance for a wide range of species including those that are currently uncommon, yet known as arboviruses vectors. Elucidation of these relationships has the potential to contribute to better prediction of MBD risk, and thus more efficiently targeted prevention and control measures.


Asunto(s)
Aedes , Culex , Culicidae , Enfermedades Transmitidas por Vectores , Aedes/fisiología , Agricultura , Animales , Culex/fisiología , Humanos , Mosquitos Vectores , Ontario , Enfermedades Transmitidas por Vectores/epidemiología , Tiempo (Meteorología)
8.
New Phytol ; 231(5): 1770-1783, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33960441

RESUMEN

Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.


Asunto(s)
Micobioma , Quercus , Ecosistema , Genotipo , Micobioma/genética , Estaciones del Año
9.
Front Physiol ; 12: 612494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776784

RESUMEN

There is an increasingly widespread use of biomarkers in network physiology to evaluate an organism's physiological state. A recent study showed that albumin variability increases before death in chronic hemodialysis patients. We hypothesized that a multivariate statistical approach would better allow us to capture signals of impending physiological collapse/death. We proposed a Moving Multivariate Distance (MMD), based on the Mahalanobis distance, to quantify the variability of the multivariate biomarker profile as a whole from one visit to the next. Biomarker profiles from a visit were used as the reference to calculate MMD at the subsequent visit. We selected 16 biomarkers (of which 11 are measured every 2 weeks) from blood samples of 763 chronic kidney disease patients hemodialyzed at the CHUS hospital in Quebec, who visited the hospital regularly (∼every 2 weeks) to perform routine blood tests. MMD tended to increase markedly preceding death, indicating an increasing intraindividual multivariate variability presaging a critical transition. In survival analysis, the hazard ratio between the 97.5th percentile and the 2.5th percentile of MMD reached as high as 21.1 [95% CI: 14.3, 31.2], showing that higher variability indicates substantially higher mortality risk. Multivariate approaches to early warning signs of critical transitions hold substantial clinical promise to identify early signs of critical transitions, such as risk of death in hemodialysis patients; future work should also explore whether the MMD approach works in other complex systems (i.e., ecosystems, economies), and should compare it to other multivariate approaches to quantify system variability.

10.
Oecologia ; 193(2): 349-358, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32564187

RESUMEN

Understanding how spring phenology influences early life can provide important insights into drivers of future development and survival. We combined unique, long-term data from a bighorn sheep population and satellite-derived phenology indices to quantify the relative importance of maternal and environmental influences on milk composition and lamb overwinter survival. Based on 216 milk samples from 34 females monitored over 6 years, we found that longer snow-free and vegetation growing seasons increased milk fatty acid, iron and lactose concentrations. Structural equation modelling revealed no causality between milk energy content, lamb weaning mass and lamb overwinter survival. Our results suggest that spring conditions can affect milk energy content, but we did not detect any effect on lamb overwinter survival either directly or indirectly through lamb weaning mass. The effect of green-up date on milk composition and energy content suggests that herbivores living in seasonal environments, such as the bighorn sheep, might rely on a strategy intermediate between 'capital' and 'income' breeding when energy demands are high.


Asunto(s)
Mamíferos , Leche , Animales , Cruzamiento , Femenino , Estaciones del Año , Ovinos , Destete
11.
Ecol Lett ; 23(7): 1050-1063, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32429003

RESUMEN

There is a rich amount of information in co-occurrence (presence-absence) data that could be used to understand community assembly. This proposition first envisioned by Forbes (1907) and then Diamond (1975) prompted the development of numerous modelling approaches (e.g. null model analysis, co-occurrence networks and, more recently, joint species distribution models). Both theory and experimental evidence support the idea that ecological interactions may affect co-occurrence, but it remains unclear to what extent the signal of interaction can be captured in observational data. It is now time to step back from the statistical developments and critically assess whether co-occurrence data are really a proxy for ecological interactions. In this paper, we present a series of arguments based on probability, sampling, food web and coexistence theories supporting that significant spatial associations between species (or lack thereof) is a poor proxy for ecological interactions. We discuss appropriate interpretations of co-occurrence, along with potential avenues to extract as much information as possible from such data.


Asunto(s)
Cadena Alimentaria
12.
Ecology ; 100(8): e02759, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31131887

RESUMEN

Recently developing hierarchical community models (HCMs) accounting for incomplete sampling are promising approaches to understand community organization. However, pros and cons of incorporating incomplete sampling in the analysis and related design issues remain unknown. In this study, we compared HCM and canonical redundancy analysis (RDA) carried out with 10 different dissimilarity coefficients to evaluate how each approach restores true community abundance data sampled with imperfect detection. We conducted simulation experiments with varying numbers of sampling sites, visits, mean detectability and mean abundance. Performance of HCM was measured by estimates of "expected" (mean) abundance ( λ^ij ) and realized abundance ( N^ij : direct estimate of site- and species-specific abundance). We also compared HCM and different types of RDA (normal, partial, and weighted), all performed with the same ten different dissimilarity coefficients, with unequal number of visits to sampling sites. In addition, we applied the models to a virtual survey carried out on the Barro Colorado Island tree plot data for which we know true community abundance. Simulation experiments showed that N^ij yielded by HCM best restored the underlying abundance of constituent species among 12 abundance estimates by HCM and RDA regardless if the sampling was equal or unequal. Mean abundance predominantly affected the performance of HCM and RDA while λ^ij yielded by HCM had comparable performance to percentage difference and Gower dissimilarity coefficients of RDA. Relative performance of RDA types depended on the combination of dissimilarity coefficients and the distribution of sampling effort. Best performance of N^ij followed by λ^ij , percentage difference and Gower dissimilarity were also observed for the analysis of tree plot data, and graphical plots (triplots) based on λ^ij rather than N^ij clearly separated the effects of two environmental covariates on the abundance of constituent species. Under our conditions of model evaluation and the method, we concluded that, in terms of assessing the environmental dependence of abundance, HCMs and RDA can have comparable performance if we can choose appropriate dissimilarity coefficients for RDA. However, since HCMs provide straightforward biological interpretations of parameter estimates and flexibility of the analysis, HCMs would be useful in many situations as well as conventional canonical ordinations.


Asunto(s)
Modelos Biológicos , Colorado
13.
J Anim Ecol ; 88(6): 857-869, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883718

RESUMEN

Ecologists seek to understand the fitness consequences of variation in physiological markers, under the hypothesis that physiological state is linked to variability in individual condition and life history. Thus, ecologists are often interested in estimating correlations between entire suites of correlated traits, or biomarkers, but sample size limitations often do not allow us to do this properly when large numbers of traits or biomarkers are considered. Latent variables are a powerful tool to overcome this complexity. Recent statistical advances have enabled a new class of multivariate models-multivariate hierarchical modelling (MHM) with latent variables-which allow to statistically estimate unstructured covariances/correlations among traits with reduced constraints on the number of degrees of freedom to account in the model. It is thus possible to highlight correlated structures in potentially very large numbers of traits. Here, we apply MHM to evaluate the relative importance of individual differences and environmental effects on milk composition and identify the drivers of this variation. We ask whether variation in bighorn sheep milk affects offspring fitness. We evaluate whether mothers show repeatable individual differences in the concentrations of 11 markers of milk composition, and we investigate the relative importance of annual variability, maternal identity and morphological traits in structuring milk composition. We then use variance estimates to investigate how a subset of repeatable milk markers influence lamb summer survival. Repeatability of milk markers ranged from 0.05 to 0.64 after accounting for year-to-year variations. Milk composition was weakly but significantly associated with maternal mass in June and September, summer mass gain and winter mass loss. Variation explained by year-to-year fluctuations ranged from 0.07 to 0.91 suggesting a strong influence of environmental variability on milk composition. Milk composition did not affect lamb survival to weaning. Using joint models in ecological, physiological or behavioural contexts has the major advantage of decomposing a (co)variance/correlation matrix while being estimated with fewer parameters than in a "traditional" mixed-effects model. The joint models presented here complement a growing list of tools to analyse correlations at different hierarchical levels separately and may thus represent a partial solution to the conundrum of physiological complexity.


Asunto(s)
Lactancia , Leche , Animales , Fenotipo , Ovinos , Destete
14.
Ecol Lett ; 22(6): 904-913, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30861289

RESUMEN

Pathogens are embedded in a complex network of microparasites that can collectively or individually alter disease dynamics and outcomes. Endemic pathogens that infect an individual in the first years of life, for example, can either facilitate or compete with subsequent pathogens thereby exacerbating or ameliorating morbidity and mortality. Pathogen associations are ubiquitous but poorly understood, particularly in wild populations. We report here on 10 years of serological and molecular data in African lions, leveraging comprehensive demographic and behavioural data to test if endemic pathogens shape subsequent infection by epidemic pathogens. We combine network and community ecology approaches to assess broad network structure and characterise associations between pathogens across spatial and temporal scales. We found significant non-random structure in the lion-pathogen co-occurrence network and identified both positive and negative associations between endemic and epidemic pathogens. Our results provide novel insights on the complex associations underlying pathogen co-occurrence networks.


Asunto(s)
Leones , Animales , Leones/microbiología , Leones/parasitología , Conducta Social
15.
New Phytol ; 220(4): 1248-1261, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29573431

RESUMEN

Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity.


Asunto(s)
Micobioma , Micorrizas/fisiología , Plantago/microbiología , Microbiología del Suelo , Geografía , Suelo
16.
J Anim Ecol ; 87(3): 801-812, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29417993

RESUMEN

Within natural communities, different taxa display different dynamics in time. Why this is the case we do not fully know. This thwarts our ability to predict changes in community structure, which is important for both the conservation of rare species in natural communities and for the prediction of pest outbreaks in agriculture. Species sharing phylogeny, natural enemies and/or life-history traits have been hypothesized to share similar temporal dynamics. We operationalized these concepts into testing whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among herbivorous community members. Focusing on two similar datasets from different geographical regions (Finland and Japan), we used asymmetric eigenvector maps as temporal variables to characterize species- and community-level dynamics of specialist insect herbivores on oak (Quercus). We then assessed whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among taxa. Species-specific temporal dynamics varied widely, ranging from directional decline or increase to more complex patterns. Phylogeny was a clear predictor of similarity in temporal dynamics at the Finnish site, whereas for the Japanese site, the data were uninformative regarding a phylogenetic imprint. Voltinism, feeding guild and parasitoid overlap explained little variation at either location. Despite the rapid temporal dynamics observed at the level of individual species, these changes did not translate into any consistent temporal changes at the community level in either Finland or Japan. Overall, our findings offer no direct support for the notion that species sharing natural enemies and/or life-history traits would be characterized by similar temporal dynamics, but reveal a strong imprint of phylogenetic relatedness. As this phylogenetic signal cannot be attributed to guild, voltinism or parasitoids, it will likely derive from shared microhabitat, microclimate, anatomy, physiology or behaviour. This has important implications for predicting insect outbreaks and for informing insect conservation. We hope that future studies will assess the generality of our findings across plant-feeding insect communities and beyond, and establish the more precise mechanism(s) underlying the phylogenetic imprint.


Asunto(s)
Herbivoria , Insectos/fisiología , Rasgos de la Historia de Vida , Filogenia , Quercus , Animales , Finlandia , Insectos/clasificación , Japón
17.
Ecol Evol ; 7(2): 654-664, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28116060

RESUMEN

A fundamental goal of ecology is to understand the determinants of species' distributions (i.e., the set of locations where a species is present). Competition among species (i.e., interactions among species that harms each of the species involved) is common in nature and it would be tremendously useful to quantify its effects on species' distributions. An approach to studying the large-scale effects of competition or other biotic interactions is to fit species' distributions models (SDMs) and assess the effect of competitors on the distribution and abundance of the species of interest. It is often difficult to validate the accuracy of this approach with available data. Here, we simulate virtual species that experience competition. In these simulated datasets, we can unambiguously identify the effects that competition has on a species' distribution. We then fit SDMs to the simulated datasets and test whether we can use the outputs of the SDMs to infer the true effect of competition in each simulated dataset. In our simulations, the abiotic environment influenced the effects of competition. Thus, our SDMs often inferred that the abiotic environment was a strong predictor of species abundance, even when the species' distribution was strongly affected by competition. The severity of this problem depended on whether the competitor excluded the focal species from highly suitable sites or marginally suitable sites. Our results highlight how correlations between biotic interactions and the abiotic environment make it difficult to infer the effects of competition using SDMs.

19.
Oecologia ; 181(1): 257-69, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841931

RESUMEN

Intraguild (IG) predation and interspecific competition may affect the settlement and success of species in their habitats. Using data on forest-dwelling hawks from Finland, we addressed the impact of an IG predator, the northern goshawk Accipiter gentilis (goshawk), on the breeding of an IG prey, the common buzzard Buteo buteo. We hypothesized that the subordinate common buzzard avoids breeding in the proximity of goshawks and that interspecific competitors, mainly Strix owls, may also disturb common buzzards by competing for nests and food. Our results show that common buzzards more frequently occupied territories with a low IG predation threat and with no interspecific competitors. We also observed that common buzzards avoided territories with high levels of grouse, the main food of goshawks, possibly due to a risk of IG predation since abundant grouse can attract goshawks. High levels of small rodents attracted interspecific competitors to common buzzard territories and created a situation where there was not only an abundance of food but also an abundance of competitors for the food. These results suggest interplay between top-down and bottom-up processes which influence the interactions between avian predator species. We conclude that the common buzzard needs to balance the risks of IG predation and interference competition with the availability of its own resources. The presence of other predators associated with high food levels may impede a subordinate predator taking full advantage of the available food. Based on our results, it appears that interspecific interactions with dominant predators have the potential to influence the distribution pattern of subordinate predators.


Asunto(s)
Halcones/fisiología , Conducta Predatoria , Estrigiformes/fisiología , Animales , Conducta Competitiva , Finlandia , Cadena Alimentaria , Bosques , Especificidad de la Especie
20.
Trends Ecol Evol ; 30(12): 766-779, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26519235

RESUMEN

Technological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by example and discuss recent computation tools and future directions.


Asunto(s)
Biota , Modelos Estadísticos , Ecosistema , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...