Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Genet ; 14: 1099995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035737

RESUMEN

Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.

2.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349561

RESUMEN

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Asunto(s)
Cuerpo Calloso , Enfermedades Mitocondriales , Humanos , Femenino , Embarazo , Cuerpo Calloso/patología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Enfermedades Mitocondriales/genética , Mitocondrias/patología , Mutación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
3.
Mol Diagn Ther ; 26(5): 551-560, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35838873

RESUMEN

BACKGROUND AND OBJECTIVE: Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders associated with significant morbidity and mortality for which substantial evidence for a genetic contribution was previously reported. We present a detailed molecular investigation of a cohort of 231 patients presenting with primary cardiomyopathy below the age of 18 years. METHODS: Cases with pediatric cardiomyopathies were analyzed using a next-generation sequencing (NGS) workflow based on a virtual panel including 57 cardiomyopathy-related genes. RESULTS: This molecular approach led to the identification of 69 cases (29.9% of the cohort) genotyped as a carrier of at least one pathogenic or likely pathogenic variant. Fourteen patients were carriers of two mutated alleles (homozygous or compound heterozygous) on the same cardiomyopathy-related gene, explaining the severe clinical disease with early-onset cardiomyopathy. Homozygous TNNI3 pathogenic variants were detected for five unrelated neonates (2.2% of the cohort), with four of them carrying the same truncating variant, i.e. p.Arg69Alafs*8. CONCLUSIONS: Our study confirmed the importance of genetic testing in pediatric cardiomyopathies. Discovery of novel pathogenic variations is crucial for clinical management of affected families, as a positive genetic result might be used by a prospective parent for prenatal genetic testing or in the process of pre-implantation genetic diagnosis.


Asunto(s)
Cardiomiopatías , Secuenciación de Nucleótidos de Alto Rendimiento , Adolescente , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Niño , Pruebas Genéticas , Humanos , Recién Nacido , Mutación , Estudios Prospectivos
4.
Eur J Hum Genet ; 30(9): 1076-1082, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35729264

RESUMEN

This monocentric study included fifteen children under a year old in intensive care with suspected monogenic conditions for rapid trio exome sequencing (rES) between April 2019 and April 2021. The primary outcome was the time from blood sampling to rapid exome sequencing report to parents. All results were available within 16 days and were reported to parents in or under 16 days in 13 of the 15 individuals (86%). Six individuals (40%) received a diagnosis with rES, two had a genetic condition not diagnosed by rES. Eight individuals had their care impacted by their rES results, four were discharged or died before the results. This small-scale study shows that rES can be implemented in a regional University hospital with rapid impactful diagnosis to improve care in critically ill infants.


Asunto(s)
Enfermedad Crítica , Exoma , Adolescente , Niño , Hospitales , Humanos , Lactante , Padres , Secuenciación del Exoma/métodos
5.
Eur J Hum Genet ; 30(6): 682-686, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34803161

RESUMEN

Kabuki syndrome (KS) is a rare genetic disorder caused by mutations in two major genes, KMT2D and KDM6A, that are responsible for Kabuki syndrome 1 (KS1, OMIM147920) and Kabuki syndrome 2 (KS2, OMIM300867), respectively. We lack a description of clinical signs to distinguish KS1 and KS2. We used facial morphology analysis to detect any facial morphological differences between the two KS types. We used a facial-recognition algorithm to explore any facial morphologic differences between the two types of KS. We compared several image series of KS1 and KS2 individuals, then compared images of those of Caucasian origin only (12 individuals for each gene) because this was the main ethnicity in this series. We also collected 32 images from the literature to amass a large series. We externally validated results obtained by the algorithm with evaluations by trained clinical geneticists using the same set of pictures. Use of the algorithm revealed a statistically significant difference between each group for our series of images, demonstrating a different facial morphotype between KS1 and KS2 individuals (mean area under the receiver operating characteristic curve = 0.85 [p = 0.027] between KS1 and KS2). The algorithm was better at discriminating between the two types of KS with images from our series than those from the literature (p = 0.0007). Clinical geneticists trained to distinguished KS1 and KS2 significantly recognised a unique facial morphotype, which validated algorithm findings (p = 1.6e-11). Our deep-neural-network-driven facial-recognition algorithm can reveal specific composite gestalt images for KS1 and KS2 individuals.


Asunto(s)
Anomalías Múltiples , Reconocimiento Facial , Enfermedades Hematológicas , Enfermedades Vestibulares , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Humanos , Mutación , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
6.
Am J Med Genet A ; 185(11): 3446-3458, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34436830

RESUMEN

The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution occurring with age. We report familial ASXL3 pathogenic variants, characterize the phenotype in mildly affected individuals and discuss nonpenetrance. We also discuss the role of missense variants in ASXL3. We delineate a variable but consistent phenotype. The most characteristic features are neurodevelopmental delay with consistently limited speech, significant neuro-behavioral issues, hypotonia, and feeding difficulties. Distinctive features include downslanting palpebral fissures, hypertelorism, tubular nose with a prominent nasal bridge, and low-hanging columella. The presented data will inform clinical management of individuals with ASXL3-related syndrome and improve interpretation of new ASXL3 sequence variants.


Asunto(s)
Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/fisiopatología , Femenino , Variación Genética/genética , Humanos , Hipertelorismo/genética , Hipertelorismo/fisiopatología , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Mutación/genética , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Adulto Joven
7.
Clin Genet ; 99(5): 650-661, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33415748

RESUMEN

Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.


Asunto(s)
Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/fisiopatología , Ensayos Clínicos como Asunto , Megalencefalia/diagnóstico por imagen , Megalencefalia/fisiopatología , Neuroimagen , Enfermedades Cutáneas Vasculares/diagnóstico por imagen , Enfermedades Cutáneas Vasculares/fisiopatología , Telangiectasia/congénito , Anomalías Múltiples/tratamiento farmacológico , Adolescente , Adulto , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios de Cohortes , Femenino , Predicción , Humanos , Imagen por Resonancia Magnética , Masculino , Megalencefalia/tratamiento farmacológico , Enfermedades Cutáneas Vasculares/tratamiento farmacológico , Telangiectasia/diagnóstico por imagen , Telangiectasia/tratamiento farmacológico , Telangiectasia/fisiopatología , Adulto Joven
8.
Arthritis Rheumatol ; 72(10): 1689-1693, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32510848

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is the most common joint disease worldwide. The etiology of OA is varied, ranging from multifactorial to environmental to monogenic. In a condition called early-onset OA, OA occurs at an earlier age than is typical in the general population. To our knowledge, there have been no large-scale genetic studies of individuals with early-onset OA. The present study was undertaken to investigate causes of monogenic OA in individuals with nonsyndromic early-onset OA. METHODS: The study probands were 45 patients with nonsyndromic early-onset OA who were referred to our skeletal disease center by skeletal dysplasia experts between 2013 and 2019. Criteria for early-onset OA included radiographic evidence, body mass index ≤30 kg/m2 , age at onset ≤50 years, and involvement of ≥1 joint site. Molecular analysis was performed with a next-generation sequencing panel. RESULTS: We identified a genetic variant in 13 probands (29%); the affected gene was COL2A1 in 11, ACAN in 1, and SLC26A2 in 1. After familial segregation analysis, 20 additional individuals were identified. The mean ± SD age at onset of joint pain was 19.5 ± 3.9 years (95% confidence interval 3-47). Eighteen of 33 subjects (55%) with nonsyndromic early-onset OA and a genetic variant had had at least 1 joint replacement (mean ± SD age at first joint replacement 41 ± 4.2 years; mean number of joint replacements 2.6 per individual), and 21 (45%) of the joint replacement surgeries were performed when the patient was <45 years old. Of the 20 patients age >40 years, 17 (85%) had had at least 1 joint replacement. CONCLUSION: We confirmed that COL2A1 is the main monogenic cause of nonsyndromic early-onset OA. However, on the basis of genetic heterogeneity of early-onset OA, we recommend next-generation sequencing for all individuals who undergo joint replacement prior to the age of 45 years. Lifestyle recommendations for prevention should be implemented.


Asunto(s)
Colágeno Tipo II/genética , Osteoartritis/diagnóstico , Adolescente , Edad de Inicio , Agrecanos/genética , Índice de Masa Corporal , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Osteoartritis/genética , Transportadores de Sulfato/genética , Adulto Joven
9.
Genet Med ; 22(3): 538-546, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31723249

RESUMEN

PURPOSE: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292). METHODS: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing. Available data were analyzed to characterize the canonical phenotype and examine genotype-phenotype relationships. RESULTS: Probands presented with ID as well as a spectrum of neurodevelopmental features including ASD, among others. All ZNF292 variants were de novo, except in one family with dominant inheritance. ZNF292 encodes a highly conserved zinc finger protein that acts as a transcription factor and is highly expressed in the developing human brain supporting its critical role in neurodevelopment. CONCLUSION: De novo and dominantly inherited variants in ZNF292 are associated with a range of neurodevelopmental features including ID and ASD. The clinical spectrum is broad, and most individuals present with mild to moderate ID with or without other syndromic features. Our results suggest that variants in ZNF292 are likely a recurrent cause of a neurodevelopmental disorder manifesting as ID with or without ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Niño , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Neuroimagen/métodos , Secuenciación del Exoma/métodos
10.
Mol Genet Genomic Med ; 7(11): e00895, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493343

RESUMEN

BACKGROUND: Tetrasomy 21 is a very rare aneuploidy which could clinically resemble a Down syndrome. It was most often described in its partial form than complete. We report the prenatal, pathological and genetic characteristics of a fetus with mosaic complete tetrasomy 21. This is the second well-documented description of a complete tetrasomy 21 in the literature. METHODS: Prenatal and fetal pathological examinations, cytogenetic and molecular analyses were performed to characterize fetal features with tetrasomy 21. RESULTS: Prenatal ultrasound examination revealed an isolated complete atrioventricular septal defect with normal karyotype on amniotic fluid. After termination of pregnancy, clinical examination of the fetus evoked trisomy 21 or Down syndrome. Chromosomal microarray analysis and FISH on lung tissue showed a mosaicism with four copies of chromosome 21 (tetrasomy 21). CONCLUSION: Our observation and the review of the literature reported the possibility of very weak mosaicism and disease-causing confined tissue-specific mosaicism in fetus or alive patients with chromosome 21 aneuploidy, mainly Down syndrome. In case of clinical diagnosis suggestive of Down syndrome, attention must be paid to the risk of false-negative test due to chromosomal mosaicism (very weak percentage, different tissue distribution). To overcome this risk, it is necessary to privilege the diagnostic techniques without culture step and to increase the number of cells and tissues analyzed, if possible. This study highlights the limits of microarray as the unique diagnostic approach in case of weak mosaic and French cytogenetics guidelines recommend to check anomalies seen in microarray by another technique on the same tissue.


Asunto(s)
Aneuploidia , Cromosomas Humanos Par 21/genética , Defectos de los Tabiques Cardíacos/diagnóstico , Mosaicismo , Diagnóstico Prenatal/métodos , Tetrasomía , Adulto , Amniocentesis , Femenino , Defectos de los Tabiques Cardíacos/genética , Humanos , Embarazo
11.
Eur J Hum Genet ; 27(11): 1692-1700, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31285529

RESUMEN

Early infantile epileptic encephalopathy (EIEE) is a heterogeneous group of severe forms of age-related developmental and epileptic encephalopathies with onset during the first weeks or months of life. The interictal electroencephalogram (EEG) shows a "suppression burst" (SB) pattern. The prognosis is usually poor and most children die within the first two years or survive with very severe intellectual disabilities. EIEE type 3 is caused by variants affecting function, in SLC25A22, which is also responsible for epilepsy of infancy with migrating focal seizures (EIMFS). We report a family with a less severe phenotype of EIEE type 3. We performed exome sequencing and identified two unreported variants in SLC25A22 in the compound heterozygous state: NM_024698.4: c.[813_814delTG];[818 G>A] (p.[Ala272Glnfs*144];[Arg273Lys]). Functional studies in cultured skin fibroblasts from a patient showed that glutamate oxidation was strongly defective, based on a literature review. We clustered the 18 published patients (including those from this family) into three groups according to the severity of the SLC25A22-related disorders. In an attempt to identify genotype-phenotype correlations, we compared the variants according to the location depending on the protein domains. We observed that patients with two variants located in helical transmembrane domains presented a severe phenotype, whereas patients with at least one variant outside helical transmembrane domains presented a milder phenotype. These data are suggestive of a continuum of disorders related to SLC25A22 that could be called SLC25A22-related disorders. This might be a first clue to enable geneticists to outline a prognosis based on genetic molecular data regarding the SLC25A22 gene.


Asunto(s)
Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Espasmos Infantiles/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Electroencefalografía , Exoma , Femenino , Fibroblastos , Humanos , Masculino , Linaje , Fenotipo , Piel
12.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388402

RESUMEN

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Asunto(s)
Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Animales , Corteza Cerebral/patología , Niño , Preescolar , Codón sin Sentido/genética , Estudios de Cohortes , Cuerpo Calloso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
13.
Eur J Hum Genet ; 26(11): 1611-1622, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30006632

RESUMEN

Acrodysostosis (MIM 101800) is a dominantly inherited condition associating (1) skeletal features (short stature, facial dysostosis, and brachydactyly with cone-shaped epiphyses), (2) resistance to hormones and (3) possible intellectual disability. Acroscyphodysplasia (MIM 250215) is characterized by growth retardation, brachydactyly, and knee epiphyses embedded in cup-shaped metaphyses. We and others have identified PDE4D or PRKAR1A variants in acrodysostosis; PDE4D variants have been reported in three cases of acroscyphodysplasia. Our study aimed at reviewing the clinical and molecular findings in a cohort of 27 acrodysostosis and 5 acroscyphodysplasia cases. Among the acrodysostosis cases, we identified 9 heterozygous de novo PRKAR1A variants and 11 heterozygous PDE4D variants. The 7 patients without variants presented with symptoms of acrodysostosis (brachydactyly and cone-shaped epiphyses), but none had the characteristic facial dysostosis. In the acroscyphodysplasia cases, we identified 2 PDE4D variants. For 2 of the 3 negative cases, medical records revealed early severe infection, which has been described in some reports of acroscyphodysplasia. Subdividing our series of acrodysostosis based on the disease-causing gene, we confirmed genotype-phenotype correlations. Hormone resistance was consistently observed in patients carrying PRKAR1A variants, whereas no hormone resistance was observed in 9 patients with PDE4D variants. All patients with PDE4D variants shared characteristic facial features (midface hypoplasia with nasal hypoplasia) and some degree of intellectual disability. Our findings of PDE4D variants in two cases of acroscyphodysplasia support that PDE4D may be responsible for this severe skeletal dysplasia. We eventually emphasize the importance of some specific assessments in the long-term follow up, including cardiovascular and thromboembolic risk factors.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Disostosis/genética , Epífisis/anomalías , Exostosis Múltiple Hereditaria/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Rodilla/anomalías , Osteocondrodisplasias/genética , Fenotipo , Adolescente , Adulto , Niño , Disostosis/patología , Epífisis/patología , Exostosis Múltiple Hereditaria/patología , Femenino , Deformidades Congénitas de la Mano/patología , Heterocigoto , Humanos , Discapacidad Intelectual/patología , Rodilla/patología , Masculino , Mutación , Osteocondrodisplasias/patología , Síndrome
14.
J Med Genet ; 55(6): 422-429, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29459493

RESUMEN

BACKGROUND: Segmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV. PATIENTS AND METHODS: We used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3, MESP2, LFNG, HES7 and TBX6) in the first 48 patients and whole-exome sequencing (WES) in 28 relevant patients. RESULTS: Ten diagnoses, including four biallelic variants in TBX6, two biallelic variants in LFNG and DLL3, and one in MESP2 and HES7, were made with the gene panel, and two diagnoses, including biallelic variants in FLNB and one variant in MEOX1, were made by WES. The diagnostic yield of the gene panel was 10/73 (13.7%) in the global cohort but 8/10 (80%) in the subgroup meeting the SCD criteria; the diagnostic yield of WES was 2/28 (8%). CONCLUSION: After negative array CGH, targeted sequencing of the five known SCD genes should only be performed in patients who meet the diagnostic criteria of SCD. The low proportion of candidate genes identified by WES in our cohort suggests the need to consider more complex genetic architectures in cases of SDV.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Secuenciación del Exoma , Adolescente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Enfermedades del Desarrollo Óseo/fisiopatología , Niño , Preescolar , Femenino , Glicosiltransferasas/genética , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Mutación , Linaje , Fenotipo , Columna Vertebral/metabolismo , Columna Vertebral/patología , Proteínas de Dominio T Box/genética
15.
Genet Med ; 20(2): 269-274, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28771243

RESUMEN

PurposeBased on prenatal suspicion of the combination of radioulnar or radiohumeral synostosis and a peculiar shape of the skull suggestive of craniosynostosis, we report on six patients from four unrelated consanguineous families in whom Antley-Bixler syndrome was suspected during the prenatal period without mutation in genes known to be associated with the syndrome.MethodsMolecular diagnosis involved whole-exome and gene-panel sequencing. RESULTS: All sequenced patients showed a unique homozygous mutation of c.667G>A, p.Gly223Ser (NM_012200) in the beta-1,3-glucuronyltransferase 3 (B3GAT3) gene known to be involved in linkeropathy syndrome. Linkeropathies correspond to a recently identified group of heterogeneous genetic syndromes along a spectrum of skeletal and connective tissue disorders. These patients featured mainly craniosynostosis, midface hypoplasia, bilateral radioulnar synostosis, multiple neonatal fractures, dislocated joints, joint contracture, long fingers, foot deformity, and cardiovascular abnormalities. All died before 1 year of age.ConclusionWe identified a novel B3GAT3-related disorder with craniosynostosis and bone fragility, due to a unique homozygous mutation in B3GAT3. This syndrome should be considered in the prenatal period in light of the severe outcome and as an alternative diagnosis to Antley-Bixler or Shprintzen-Goldberg syndrome.


Asunto(s)
Huesos/anomalías , Huesos/metabolismo , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glucuronosiltransferasa/genética , Mutación , Huesos/patología , Diagnóstico Diferencial , Humanos , Fenotipo , Análisis de Secuencia de ADN , Cráneo/anomalías , Cráneo/diagnóstico por imagen , Síndrome , Ultrasonografía Prenatal , Secuenciación Completa del Genoma
16.
Eur J Hum Genet ; 26(2): 287-292, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255276

RESUMEN

CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.


Asunto(s)
Síndrome CHARGE/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Mutación , Sitios de Empalme de ARN , Niño , Biología Computacional/métodos , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos
17.
Am J Med Genet A ; 173(12): 3136-3142, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29136349

RESUMEN

Frontonasal dysplasias are rare congenital malformations of frontonasal process-derived structures, characterized by median cleft, nasal anomalies, widely spaced eyes, and cranium bifidum occultum. Several entities of syndromic frontonasal dysplasia have been described, among which, to date, only a few have identified molecular bases. We clinically ascertained a cohort of 124 individuals referred for frontonasal dysplasia. We identified six individuals with a similar phenotype, including one discordant monozygous twin. Facial features were remarkable by nasal deformity with creased ridge and depressed or absent tip, widely spaced eyes, almond-shaped palpebral fissures, and downturned corners of the mouth. All had apparently normal psychomotor development. In addition, upper limb anomalies, frontonasal encephalocele, corpus callosum agenesis, choanal atresia, and congenital heart defect were observed. We identified five reports in the literature of patients presenting with the same phenotype. Exome sequencing was performed on DNA extracted from blood of two individuals, no candidate gene was identified. In conclusion, we report six novel simplex individuals presenting with a specific frontonasal dysplasia entity associating recognizable facial features, limb and visceral malformations, and apparently normal development. The identification of discordant monozygotic twins supports the hypothesis of a mosaic disorder. Although previous patients have been reported, this is the first series, allowing delineation of a clinical subtype of frontonasal dysplasia, paving the way toward the identification of its molecular etiology.


Asunto(s)
Anomalías Múltiples/genética , Agenesia del Cuerpo Calloso/diagnóstico , Atresia de las Coanas/diagnóstico , Anomalías Craneofaciales/diagnóstico , Encefalocele/diagnóstico , Cara/anomalías , Cardiopatías Congénitas/diagnóstico , Agenesia del Cuerpo Calloso/genética , Atresia de las Coanas/genética , Estudios de Cohortes , Anomalías Craneofaciales/clasificación , Anomalías Craneofaciales/genética , Encefalocele/genética , Encefalocele/patología , Huesos Faciales/anomalías , Femenino , Cardiopatías Congénitas/genética , Humanos , Lactante , Masculino , Nariz/anomalías , Fenotipo , Secuenciación del Exoma
18.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28859103

RESUMEN

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Asunto(s)
Regulación de la Expresión Génica/genética , Hipotálamo/fisiología , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Factores de Transcripción/genética , Adulto , Animales , Sistemas CRISPR-Cas , Línea Celular , Niño , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Obesidad/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Pez Cebra
19.
Hum Mutat ; 38(5): 581-593, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28236341

RESUMEN

Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2.


Asunto(s)
Estudios de Asociación Genética , Heterocigoto , Mutación , Receptor de Endotelina B/genética , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética , Adolescente , Adulto , Sustitución de Aminoácidos , Niño , Preescolar , Biología Computacional/métodos , Análisis Mutacional de ADN , Exoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espacio Intracelular/metabolismo , Iris , Masculino , Tasa de Mutación , Linaje , Fenotipo , Transporte de Proteínas , Sitios de Empalme de ARN , Receptor de Endotelina B/metabolismo , Adulto Joven
20.
Eur J Hum Genet ; 24(8): 1124-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26757980

RESUMEN

Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies.


Asunto(s)
Leucemia Mielomonocítica Juvenil/genética , Mutación , Síndrome de Noonan/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Leucemia Mielomonocítica Juvenil/patología , Masculino , Síndrome de Noonan/patología , Linaje , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...