Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Sports Act Living ; 4: 992687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311211

RESUMEN

Background: Quadrupedal movement training (QMT) is a novel alternative form of exercise recently shown to improve several fitness characteristics including flexibility, movement quality, and dynamic balance. However, the specific energy demands of this style of training remain unknown. Therefore, the purpose of this study was to compare the energy expenditure (EE) of a beginner-level quadrupedal movement training (QMT) class using Animal Flow (AF) to walking, and to compare EE between segments of the AF class and gender. Methods: Participants (15 male, 15 female) completed 60-min sessions of AF, treadmill walking at a self-selected intensity (SSIT) and treadmill walking at an intensity that matched the heart rate of the AF session (HRTM). Indirect calorimetry was used to estimate energy expenditure. Results: AF resulted in an EE of 6.7 ± 1.8 kcal/min, 5.4 ± 1.0 METs, and HR of 127.1 ± 16.1 bpm (63.4 ± 8.1% of the subjects' age-predicted maximum HR), while SSIT resulted in an EE of 5.1 ± 1.0 kcal/min, 4.3 ± 0.7 METs, HR of 99.8 ± 13.5 bpm (49.8 ± 6.7% age-predicted maximum HR), and HRTM resulted in and EE of 7.6 ± 2.2 kcal/min, 6.1 ± 1.0 METs, and HR of 124.9 ± 16.3 bpm (62.3 ± 8.2% age-predicted maximum HR). Overall, EE, METs, HR and respiratory data for AF was greater than SSIT (p's < 0.001) and either comparable or slightly less than HRTM. The Flow segment showed the highest EE (8.7 ± 2.7 kcal/min), METs (7.0 ± 1.7) and HR (153.2 ± 15.7 bpm). Aside from HR, males demonstrated greater EE, METs, and respiratory values across all sessions and segments of AF than females. Conclusions: QMT using AF meets the ACSM's criteria for moderate-intensity physical activity and should be considered a viable alternative to help meet physical activity guidelines.

2.
Front Physiol ; 12: 780755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966291

RESUMEN

Exogenous ketone esters have demonstrated the capacity to increase oxygen availability during acute hypoxic exposure leading to the potential application of their use to mitigate performance declines at high altitudes. Voluntary hypoventilation (VH) with exercise reliably reduces oxygen availability and increases carbon dioxide retention without alterations to ambient pressure or gas content. Utilizing a double-blind randomized crossover design, fifteen recreational male distance runners performed submaximal exercise (4 × 5 min; 70% VO2 Max) with VH. An exogenous ketone ester (KME; 573 mg⋅kg-1) or iso-caloric flavor matched placebo (PLA) was consumed prior to exercise. Metabolites, blood gases, expired air, heart rate, oxygen saturation, cognition, and perception metrics were collected throughout. KME rapidly elevated R-ß-hydroxybutyrate and reduced blood glucose without altering lactate production. KME lowered pH, bicarbonate, and total carbon dioxide. VH with exercise significantly reduced blood (SpO2) and muscle (SmO2) oxygenation and increased cognitive mean reaction time and respiratory rate regardless of condition. KME administration significantly elevated respiratory exchange ratio (RER) at rest and throughout recovery from VH, compared to PLA. Blood carbon dioxide (PCO2) retention increased in the PLA condition while decreasing in the KME condition, leading to a significantly lower PCO2 value immediately post VH exercise (IPE; p = 0.031) and at recovery (p = 0.001), independent of respiratory rate. The KME's ability to rapidly alter metabolism, acid/base balance, CO2 retention, and respiratory exchange rate independent of respiratory rate changes at rest, during, and/or following VH exercise protocol illustrates a rapid countermeasure to CO2 retention in concert with systemic metabolic changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...