Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11283, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760416

RESUMEN

Several lines of evidence demonstrate that the brain histaminergic system is fundamental for cognitive processes and the expression of memories. Here, we investigated the effect of acute silencing or activation of histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMNHA neurons) in vivo in both sexes in an attempt to provide direct and causal evidence of the necessary role of these neurons in recognition memory formation and retrieval. To this end, we compared the performance of mice in two non-aversive and non-rewarded memory tests, the social and object recognition memory tasks, which are known to recruit different brain circuitries. To directly establish the impact of inactivation or activation of TMNHA neurons, we examined the effect of specific chemogenetic manipulations during the formation (acquisition/consolidation) or retrieval of recognition memories. We consistently found that acute chemogenetic silencing of TMNHA neurons disrupts the formation or retrieval of both social and object recognition memory in males and females. Conversely, acute chemogenetic activation of TMNHA neurons during training or retrieval extended social memory in both sexes and object memory in a sex-specific fashion. These results suggest that the formation or retrieval of recognition memory requires the tonic activity of histaminergic neurons and strengthen the concept that boosting the brain histaminergic system can promote the retrieval of apparently lost memories.


Asunto(s)
Neuronas , Reconocimiento en Psicología , Animales , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Reconocimiento en Psicología/fisiología , Histamina/metabolismo , Ratones Endogámicos C57BL , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Recuerdo Mental/fisiología
2.
Eur J Med Chem ; 244: 114828, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244185

RESUMEN

Cognitive deficits are enduring and disabling symptoms for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. In this study, we reported the synthesis of ß-arylchalcogeno amines bearing sulfurated, selenated, and tellurated moieties (2-4) which are structurally related to amphetamine with good activation properties for Carbonic Anhydrases (CAs) isoforms present in the cortical and hippocampal brain structures (hCA IV and hCA XIV). In addition, these compounds showed selective inhibition against the Monoamine oxidase (MAO) A isoform. In vivo evaluation of two derivatives (2a and 3a) revealed procognitive effects in the object recognition and social discrimination tests. Interestingly, these compounds, despite having a similar structure to amphetamine, did not caused hypophagia or hyperlocomotion, two effects often observed following the administration of amphetamine-like drugs. In this context, ß-arylchalcogeno amines may have utility for improving the symptoms of cognitive decline associated with neurodegenerative and psychiatric diseases such as attention deficit disorder, Parkinson's disease-related cognitive dysfunction and cognitive disorders associated with depression.


Asunto(s)
Anhidrasas Carbónicas , Humanos , Anhidrasas Carbónicas/metabolismo , Aminas/farmacología , Monoaminooxidasa , Isoformas de Proteínas , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo
3.
Neuroscience ; 497: 184-195, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35331846

RESUMEN

Growing evidence indicates that brain carbonic anhydrases (CAs) are key modulators in cognition, particularly in recognition and aversive memories. Here we described a role for these enzymes also in social recognition memory (SRM), defined as the ability to identify and recognize a conspecific, a process that is of paramount importance in gregarious species, such as rodents and humans. Male adult Wistar rats were submitted to a social discrimination task and, immediately after the sample phase, received bilateral infusions of vehicle, the CAs activator D-phenylalanine (D-Phen, 50 nmols/side), the CAs inhibitor acetazolamide (ACTZ; 10 nmols/side) or the combination of D-Phen and ACTZ directly in the CA1 region of the dorsal hippocampus or in the medial prefrontal cortex (mPFC). Animals were tested 30 min (short-term memory) or 24 h later (long-term memory). We found that inhibition of CAs with infusion of ACTZ either in the CA1 or in the mPFC impaired short-term SRM and that this effect was completely abolished by the combined infusion of D-Phen and ACTZ. We also found that activation of CAs with D-Phen facilitated the consolidation of long-term SRM in the mPFC but not in CA1. Finally, we show that activation of CAs in CA1 and in the mPFC enhances the persistence of SRM for up to 7 days. In both cases, the co-infusion of ACTZ fully prevented D-Phen-induced procognitive effects. These results suggest that CAs are key modulators of SRM and unveil a differential involvement of these enzymes in the mPFC and CA1 on memory consolidation.


Asunto(s)
Anhidrasas Carbónicas , Hipocampo , Corteza Prefrontal , Reconocimiento en Psicología , Animales , Anhidrasas Carbónicas/fisiología , Hipocampo/fisiología , Masculino , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar , Reconocimiento en Psicología/fisiología
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055048

RESUMEN

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Asunto(s)
Dieta , Disbiosis , Microbioma Gastrointestinal , Histamina/metabolismo , Conducta Social , Estrés Psicológico , Animales , Conducta Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiopatología , Locomoción , Masculino , Metagenoma , Metagenómica , Ratones , Ratones Noqueados , Modelos Animales
5.
Curr Top Behav Neurosci ; 59: 389-410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34410679

RESUMEN

In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H1 receptors. In this review, we recapitulate our main findings that evidence the interplay of histamine and OEA in the control of food consumption and eating behaviour, in the consolidation of emotional memory and mood, and finally, in the synthesis of ketone bodies. We will also summarise some of the putative underlying mechanisms for each scenario.


Asunto(s)
Histamina , Ácidos Oléicos , Cognición , Endocannabinoides , Etanolamina , Histamina/metabolismo , Cuerpos Cetónicos , Ácidos Oléicos/farmacología
6.
Curr Top Behav Neurosci ; 59: 303-327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34455575

RESUMEN

The histaminergic neuronal system is recently receiving increasing attention, as much has been learned over the past 25 years about histamine role as a neurotransmitter. Indeed, this amine is crucial in maintaining arousal and provides important contributions to regulate circadian rhythms, energy, endocrine homeostasis, motor behavior, and cognition. The extent to which these distinct physiological functions are operated by independent histamine neuronal subpopulation is unclear. In the rat brain histamine neuronal cell bodies are grouped within the tuberomamillary nucleus of the posterior hypothalamus in five clusters, E1-E5, each sending overlapping axons throughout the entire central nervous system with no strict topographical pattern. These features lead to the concept that histamine regulation of a wide range of functions in the central nervous system is achieved by the histaminergic neuronal system as a whole. However, increasing experimental evidence suggesting that the histaminergic system is organized into distinct pathways modulated by selective mechanisms challenges this view. In this review, we summarized experimental evidence supporting the heterogeneity of histamine neurons, and their organization in functionally distinct circuits impinging on separate brain regions and displaying selective control mechanisms. This implies independent functions of subsets of histaminergic neurons according to their respective origin and terminal projections with relevant consequences for the development of specific compounds that affect only subsets of histamine neurons, thus increasing the target specificity.


Asunto(s)
Histamina , Neuronas , Animales , Encéfalo/fisiología , Histamina/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Ratas
7.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576161

RESUMEN

Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.


Asunto(s)
Miedo/fisiología , Oxitocina/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Sitios de Unión , Extinción Psicológica , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Ratas Wistar , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/fisiología
8.
Neurobiol Stress ; 14: 100317, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33869681

RESUMEN

The physiological mechanisms underlying the complex interplay between life stressors and metabolic factors is receiving growing interest and is being analyzed as one of the many factors contributing to depressive illness. The brain histaminergic system modulates neuronal activity extensively and we demonstrated that its integrity is necessary for peripheral signals such as the bioactive lipid mediator oleoylethanolamide (OEA) to exert its central actions. Here, we investigated the role of brain histamine and its interaction with OEA in response to chronic social defeat stress (CSDS), a preclinical protocol widely used to study physio-pathological mechanisms underlying symptoms observed in depression. Both histidine decarboxylase null (HDC-/-) and HDC+/+ mice were subjected to CSDS for 21 days and treated with either OEA or vehicle daily, starting 10 days after CSDS initiation, until sacrifice. Undisturbed mice served as controls. To test the hypothesis of a histamine-OEA interplay on behavioral responses affected by chronic stress, tests encompassing the social, ethological and memory domains were used. CSDS caused cognitive and social behavior impairments in both genotypes, however, only stressed HDC+/+ mice responded to the beneficial effects of OEA. To detect subtle behavioral features, an advanced multivariate approach known as T-pattern analysis was used. It revealed unexpected differences of the organization of behavioral sequences during mice social interaction between the two genotypes. These data confirm the centrality of the neurotransmitter histamine as a modulator of complex behavioral responses and directly implicate OEA as a protective agent against social stress consequences in a histamine dependent fashion.

9.
Biomolecules ; 11(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918940

RESUMEN

The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc-/- mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc-/- and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.


Asunto(s)
Histamina/metabolismo , Histidina Descarboxilasa/genética , Memoria a Largo Plazo , Memoria a Corto Plazo , Neuronas/metabolismo , Animales , Inhibidores de la Colinesterasa/farmacología , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Histidina Descarboxilasa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Receptores Histamínicos H3/metabolismo , Conducta Social
10.
J Enzyme Inhib Med Chem ; 36(1): 719-726, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33648390

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) activators were shown to be involved in memory enhancement and learning in animal models of cognition. Here we investigated the CA activating effects of a large series of histamine based compounds, including histamine receptors (H1R - H4R) agonists, antagonists and other derivatives of this autacoid. CA activators may be thus useful for improving cognition as well as in diverse therapeutic areas (phobias, obsessive-compulsive disorder, generalised anxiety, post-traumatic stress disorders), for which activation of this enzyme was recently shown to be involved.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Emociones/efectos de los fármacos , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Memoria/efectos de los fármacos , Anhidrasas Carbónicas/genética , Agonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/química , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estructura Molecular
11.
Proc Natl Acad Sci U S A ; 117(27): 16000-16008, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571910

RESUMEN

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in mammals with 16 isoforms that differ in terms of catalytic activity as well as cellular and tissue distribution. CAs catalyze the conversion of CO2 to bicarbonate and protons and are involved in various physiological processes, including learning and memory. Here we report that the integrity of CA activity in the brain is necessary for the consolidation of fear extinction memory. We found that systemic administration of acetazolamide, a CA inhibitor, immediately after the extinction session dose-dependently impaired the consolidation of fear extinction memory of rats trained in contextual fear conditioning. d-phenylalanine, a CA activator, displayed an opposite action, whereas C18, a membrane-impermeable CA inhibitor that is unable to reach the brain tissue, had no effect. Simultaneous administration of acetazolamide fully prevented the procognitive effects of d-phenylalanine. Whereas d-phenylalanine potentiated extinction, acetazolamide impaired extinction also when infused locally into the ventromedial prefrontal cortex, basolateral amygdala, or hippocampal CA1 region. No effects were observed when acetazolamide or d-phenylalanine was infused locally into the substantia nigra pars compacta. Moreover, systemic administration of acetazolamide immediately after the extinction training session modulated c-Fos expression on a retention test in the ventromedial prefrontal cortex of rats trained in contextual fear conditioning. These findings reveal that the engagement of CAs in some brain regions is essential for providing the brain with the resilience necessary to ensure the consolidation of extinction of emotionally salient events.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Miedo/fisiología , Memoria/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Región CA1 Hipocampal/fisiología , Emociones , Aprendizaje , Masculino , Ratones , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar
12.
J Enzyme Inhib Med Chem ; 35(1): 1206-1214, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32401069

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which use CO2 as substrate, catalysing its interconversion to bicarbonate and a proton. In humans 15 CAs are expressed, 12 of which are catalytically active: the cytosolic CA I-III, VII, XIII, the membrane-bound CA IV, the mitochondrial CA VA and VB, the secreted CA VI, and the transmembrane CA IX, XII, XIV. Nine isoforms are present in the mammalian brain. Evidence supporting that CA inhibitors impair memory in humans has come from studies on topiramate and acetazolamide during acute high-altitude exposure. In contrast, administration of CA activators in animal models enhances memory and learning. Here we review the involvement of selective CA inhibition/activation in cognition-related disorders. CAs may represent a crucial family of new targets for improving cognition as well as in therapeutic areas, such as phobias, obsessive-compulsive disorder, generalised anxiety, and post-traumatic stress disorders, for which few efficient therapies are available.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Emociones , Encéfalo/enzimología , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/metabolismo , Humanos , Relación Estructura-Actividad
13.
Br J Pharmacol ; 177(3): 557-569, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30110713

RESUMEN

In this review, we describe the experimental paradigms used in preclinical studies to unravel the histaminergic brain circuits that modulate the formation and retrieval of memories associated with aversive events. Emotionally arousing events, especially bad ones, are remembered more accurately, clearly and for longer periods of time than neutral ones. Maladaptive elaborations of these memories may eventually constitute the basis of psychiatric disorders such as generalized anxiety, obsessive-compulsive disorders and post-traumatic stress disorder. A better understanding of the role of the histaminergic system in learning and memory has not only a theoretical significance but also a translational value. Ligands of histamine receptors are among the most used drugs worldwide; hence, understanding the impact of these compounds on learning and memory may help improve their pharmacological profile and unravel unexplored therapeutic applications. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.


Asunto(s)
Histamina , Trastornos Mentales , Humanos , Aprendizaje , Memoria
14.
Br J Pharmacol ; 177(3): 539-556, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30129226

RESUMEN

Several behavioural tests have been developed to study and measure emotionally charged or emotionally neutral memories and how these may be affected by pharmacological, dietary or environmental manipulations. In this review, we describe the experimental paradigms used in preclinical studies to unravel the brain circuits involved in the recognition and memorization of environmentally salient stimuli devoid of strong emotional value. In particular, we focus on the modulatory role of the brain histaminergic system in the elaboration of recognition memory that is based on the judgement of the prior occurrence of an event, and it is believed to be a critical component of human declarative memory. The review also addresses questions that may help improve the treatment of impaired declarative memory described in several affective and neuropsychiatric disorders such as ADHD, Alzheimer's disease and major neurocognitive disorder. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.


Asunto(s)
Trastornos del Conocimiento , Histamina , Encéfalo , Cognición , Humanos , Memoria
15.
Proc Natl Acad Sci U S A ; 116(19): 9644-9651, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010921

RESUMEN

Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.


Asunto(s)
Cognición/efectos de los fármacos , Dieta , Ácidos Grasos Omega-3/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hipocampo/fisiopatología , Estrés Psicológico , Animales , Ansiedad/microbiología , Ansiedad/fisiopatología , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/microbiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/prevención & control
16.
Neuropharmacology ; 135: 234-241, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29596898

RESUMEN

It has been suggested that the bioactive lipid mediator oleoylethanolamide (OEA), a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α) possesses anti-depressant-like effects in several preclinical models. We recently demonstrated that several of OEA's behavioural actions require the integrity of the brain histaminergic system, and that an intact histaminergic neurotransmission is specifically required for selective serotonin re-uptake inhibitors to exert their anti-depressant-like effect. The purpose of our study was to test if OEA requires the integrity of the histaminergic neurotransmission to exert its antidepressant-like effects. Immobility time in the tail suspension test was measured to assess OEA's potential (10 mg/kg i.p.) as an antidepressant drug in histidine decarboxylase null (HDC-/-) mice and HDC+/+ littermates, as well as in PPAR-α+/+ and PPAR-α-/- mice. CREB phosphorylation was evaluated using Western blot analysis in hippocampal and cortical homogenates, as pCREB is considered partially responsible for the efficacy of antidepressants. Serotonin release from ventral hippocampi of HDC+/+ and HDC-/- mice was measured with in-vivo microdialysis, following OEA administration. OEA decreased immobility time and increased brain pCREB levels in HDC+/+ mice, whereas it was ineffective in HDC-/- mice. Comparable results were obtained in PPAR-α+/+ and PPAR-α-/- mice. Microdialysis revealed a dysregulation of serotonin release induced by OEA in HDC-/- mice. Our observations corroborate our hypothesis that brain histamine and signals transmitted by OEA interact to elaborate appropriate behaviours and may be the basis for the efficacy of OEA as an antidepressant-like compound.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Endocannabinoides/farmacología , Histamina/deficiencia , Ácidos Oléicos/farmacología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Histidina Descarboxilasa/deficiencia , Histidina Descarboxilasa/genética , Imipramina/farmacología , Masculino , Ratones Noqueados , PPAR alfa/deficiencia , PPAR alfa/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Distribución Aleatoria , Serotonina/metabolismo
17.
Neurobiol Learn Mem ; 145: 1-6, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28838882

RESUMEN

Recent findings have reasserted the role of histamine in the regulation of memory consolidation first proposed in 1986 in an inhibitory avoidance task in rats. They indicate that histamine is indeed a major regulator of memory consolidation in various tasks, through H2 receptors in the dorsal hippocampus and through H3 receptors in the basolateral amygdala, depending on the task. In the object recognition task, the memory enhancing effect is mediated by the three receptors (H1, H2, H3) in the dorsal hippocampus. In social recognition, the consolidation effect is mediated by H2 receptors in both amygdala and dorsal hippocampus. Data have suggested, in addition, influences on retrieval; this has been best studied in the dorsal hippocampus in step-down inhibitory avoidance task. Depending on the recent history of the conditioned stimulus (i.e., whether it has been recently reinforced or not), histamine acts on hippocampal H1 receptors, facilitating retrieval, or on H2 receptors, inhibiting it.


Asunto(s)
Encéfalo/fisiología , Histamina/fisiología , Consolidación de la Memoria/fisiología , Amígdala del Cerebelo/fisiología , Animales , Reacción de Prevención/fisiología , Hipocampo/fisiología , Receptores Histamínicos/fisiología
18.
Neuropharmacology ; 118: 148-156, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28286213

RESUMEN

Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate (C18), a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Corteza Cerebral/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/enzimología , Reconocimiento en Psicología/fisiología , Acetazolamida/farmacología , Análisis de Varianza , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Hipocampo/efectos de los fármacos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Fenilalanina/farmacología , Fosforilación/efectos de los fármacos , Compuestos de Piridinio/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Sulfonamidas/farmacología
19.
Int J Neuropsychopharmacol ; 20(5): 392-399, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339575

RESUMEN

Background: The integrity of the brain histaminergic system is necessary for the unfolding of homeostatic and cognitive processes through the recruitment of alternative circuits with distinct temporal patterns. We recently demonstrated that the fat-sensing lipid mediator oleoylethanolamide indirectly activates histaminergic neurons to exerts its hypophagic effects. The present experiments investigated whether histaminergic neurotransmission is necessary also for the modulation of emotional memory induced by oleoylethanolamide in a contextual fear conditioning paradigm. Methods: We examined the acute effect of i.p. administration of oleoylethanolamide immediately posttraining in the contextual fear conditioning test. Retention test was performed 72 hours after training. To test the participation of the brain histaminergic system in the cognitive effect of oleoylethanolamide, we depleted rats of brain histamine with an i.c.v. injection of alpha-fluoromethylhistidine (a suicide inhibitor of histidine decarboxylase) or bilateral intra-amygdala infusions of histamine H1 or H2 receptor antagonists. We also examined the effect of oleoylethanolamide on histamine release in the amygdala using in vivo microdialysis. Results: Posttraining administration of oleoylethanolamide enhanced freezing time at retention. This effect was blocked by both i.c.v. infusions of alpha-fluoromethylhistidine or by intra-amygdala infusions of either pyrilamine or zolantidine (H1 and H2 receptor antagonists, respectively). Microdialysis experiments showed that oleoylethanolamide increased histamine release from the amygdala of freely moving rats. Conclusions: Our results suggest that activation of the histaminergic system in the amygdala has a "permissive" role on the memory-enhancing effects of oleoylethanolamide. Hence, targeting the H1 and H2 receptors may modify the expression of emotional memory and reduce dysfunctional aversive memories as found in phobias and posttraumatic stress disorder.


Asunto(s)
Cognición/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Endocannabinoides/farmacología , Miedo/efectos de los fármacos , Histamina/metabolismo , Ácidos Oléicos/farmacología , Análisis de Varianza , Animales , Benzotiazoles/farmacología , Inhibidores Enzimáticos/farmacología , Reacción Cataléptica de Congelación/efectos de los fármacos , Histamínicos/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Metilhistidinas/farmacología , Microdiálisis , Fenoxipropanolaminas/farmacología , Piperidinas/farmacología , Ratas , Ratas Wistar
20.
Neuropharmacology ; 113(Pt A): 533-542, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27833003

RESUMEN

Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders.


Asunto(s)
Antagonistas de Dopamina/farmacología , Conducta Exploratoria/fisiología , Histamina/deficiencia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Sulpirida/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta Exploratoria/efectos de los fármacos , Aseo Animal/efectos de los fármacos , Aseo Animal/fisiología , Masculino , Ratones , Distribución Aleatoria , Receptores de Dopamina D3/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...