Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 28(12): 125004, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38098980

RESUMEN

Significance: Non-invasive optical measurements of deep tissue (e.g., muscle) need to take into account confounding contributions from baseline and dynamic optical properties of superficial tissue (adipose tissue). Aim: Discriminate superficial and deep tissue hemodynamics using data collected with frequency-domain (FD) near-infrared spectroscopy (NIRS) in a dual-slope (DS) configuration. Approach: Experimental data were collected in vivo on the forearm of three human subjects during a 3-min arterial occlusion or 1-min venous occlusion. Theoretical data were generated using diffusion theory for two-layered media with varying values of the reduced scattering coefficient (µs') (range: 0.5 to 1.1 mm-1) and absorption coefficient (µa) (range: 0.005-0.015 mm-1) of the two layers, and top layer thickness (range: 2 to 8 mm). Data were analyzed using diffusion theory for a homogeneous semi-infinite medium. Results: Experimental data in vivo were consistent with simulated data for a two-layered medium with a larger µs' in the top layer, comparable absorption changes in the top and bottom layers during venous occlusion, and smaller absorption changes in the top vs. bottom layers during arterial occlusion. Conclusions: The dataset generated by DS FD-NIRS may allow for discrimination of superficial and deep absorption changes in two-layered media, thus lending itself to individual measurements of hemodynamics in adipose and muscle tissue.


Asunto(s)
Arteriopatías Oclusivas , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Hemodinámica , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología
2.
J Biomed Opt ; 28(7): 077001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37484977

RESUMEN

Significance: Diffuse in vivo flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells in vivo. However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. Aim: The dual ratio (DR)/dual slope is an optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and near-infrared (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. Approach: Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte Carlo to simulate DR DiFC while varying noise and AF parameters to identify the advantages and limitations of the proposed technique. Results: Two key factors must be true to give DR DiFC an advantage over traditional DiFC: first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue AF contributors is surface-weighted. Conclusions: DR cancelable noise may be designed (e.g., through the use of source multiplexing), and indications point to the AF contributors' distribution being truly surface-weighted in vivo. Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.


Asunto(s)
Fantasmas de Imagen , Relación Señal-Ruido
3.
ArXiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37292468

RESUMEN

SIGNIFICANCE: Diffuse in-vivo Flow Cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells in-vivo. However, due to Signal-to-Noise Ratio (SNR) constraints largely attributed to background tissue autofluorescence, DiFC's measurement depth is limited. multiplies Aim: The Dual-Ratio (DR) / dual-slope is a new optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and Near-InfraRed (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. APPROACH: Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte-Carlo to simulate DR DiFC while varying noise and autofluorescence parameters to identify the advantages and limitations of the proposed technique. RESULTS: Two key factors must be true to give DR DiFC an advantage over traditional DiFC; first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue autofluorescence contributors is surface-weighted. CONCLUSIONS: DR cancelable noise may be designed for (e.g. through the use of source multiplexing), and indications point to the autofluorescence contributors' distribution being truly surface-weighted in-vivo. Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.

4.
Biomed Opt Express ; 14(5): 2091-2116, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206129

RESUMEN

In frequency-domain (FD) diffuse optics it is known that the phase of photon-density waves (ϕ) has a stronger deep-to-superficial sensitivity ratio to absorption perturbations than the alternate current (AC) amplitude, or the direct current intensity (DC). This work is an attempt to find FD data types that feature similar or even better sensitivity and/or contrast-to-noise for deeper absorption perturbations than phase. One way is to start from the definition of characteristic function (Xt(ω)) of the photon's arrival time (t) and combining the real (ℜ(Xt(ω))=ACDCcos(ϕ)) and imaginary parts (ℑ[Xt(ω)]=ACDCsin(ϕ)) with phase to yield new data types. These new data types enhance the role of higher order moments of the probability distribution of the photon's arrival time t. We study the contrast-to-noise and sensitivity features of these new data types not only in the single-distance arrangement (traditionally used in diffuse optics), but we also consider the spatial gradients, which we named dual-slope arrangements. We have identified six data types that for typical values of the optical properties of tissues and depths of interest, have better sensitivity or contrast-to-noise features than phase data and that can be used to enhance the limits of imaging of tissue in FD near infrared spectroscopy (NIRS). For example, one promising data type is ϕ-ℑ[Xt(ω)] which shows, in the single-distance source-detector arrangement, an increase of deep-to-superficial sensitivity ratio with respect to phase by 41% and 27% at a source-detector separation of 25 and 35 mm, respectively. The same data type also shows an increase of contrast-to noise up to 35% with respect to phase when the spatial gradients of the data are considered.

5.
Neurophotonics ; 10(1): 013508, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36601543

RESUMEN

Significance: This work targets the contamination of optical signals by superficial hemodynamics, which is one of the chief hurdles in non-invasive optical measurements of the human brain. Aim: To identify optimal source-detector distances for dual-slope (DS) measurements in frequency-domain (FD) near-infrared spectroscopy (NIRS) and demonstrate preferential sensitivity of DS imaging to deeper tissue (brain) versus superficial tissue (scalp). Approach: Theoretical studies (in-silico) based on diffusion theory in two-layered and in homogeneous scattering media. In-vivo demonstrations of DS imaging of the human brain during visual stimulation and during systemic blood pressure oscillations. Results: The mean distance (between the two source-detector distances needed for DS) is the key factor for depth sensitivity. In-vivo imaging of the human occipital lobe with FD NIRS and a mean distance of 31 mm indicated: (1) greater hemodynamic response to visual stimulation from FD phase versus intensity, and from DS versus single-distance (SD); (2) hemodynamics from FD phase and DS mainly driven by blood flow, and hemodynamics from SD intensity mainly driven by blood volume. Conclusions: DS imaging with FD NIRS may suppress confounding contributions from superficial hemodynamics without relying on data at short source-detector distances. This capability can have significant implications for non-invasive optical measurements of the human brain.

6.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36052058

RESUMEN

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

7.
J Innov Opt Health Sci ; 15(3)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35720681

RESUMEN

We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models. We used diffusion theory togenerate optical data from a two-layered distribution of relevant tissue absorbers, namely, oxyhemoglobin, deoxyhemoglobin, water, and lipids, with a top-layer thickness in the range 1-15 mm. The generated data consisted of broadband continuous-wave (CW) diffuse reflectance in the wavelength range 650-1024 nm, and frequency-domain (FD) diffuse reflectance at 690 and 830 nm; two source-detector distances of 25 and 35 mm were used to simulate a dual-slope technique. The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coefficients at 690 and 830 nm (from FD data) and effective absorption spectra in the range 650-1024 nm (from CW data). The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin, as well as water and lipid concentrations. For absolute values, it was found that the effective hemoglobin parameters are typically representative of the bottom layer, whereas water and lipid represent some average of the respective concentrations in the two layers. For concentration changes, lipid showed a significant cross-talk with other absorber concentrations, thus indicating that lipid dynamics obtained in these conditions may not be reliable. These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity.

8.
Appl Sci (Basel) ; 12(21)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37811485

RESUMEN

Many applications seek to measure a sample's absorption coefficient spectrum to retrieve the chemical makeup. Many real-world samples are optically turbid, causing scattering confounds which many commercial spectrometers cannot address. Using diffusion theory and considering absorption and reduced scattering coefficients on the order of 0.01 mm-1 and 1 mm-1, respectively, we develop a method which utilizes frequency-domain to measure absolute optical properties of turbid samples in a standard cuvette (45 mm × 10 mm × 10 mm). Inspired by the self-calibrating method, which removes instrumental confounds, the method uses measurements of the diffuse complex transmittance at two sets of two different source-detector distances. We find: this works best for highly scattering samples (reduced scattering coefficient above 1 mm-1); higher relative error in the absorption coefficient compared to the reduced scattering coefficient; accuracy is tied to knowledge of the sample's index of refraction. Noise simulations with 0.1 % amplitude and 0.1° = 1.7 mrad phase uncertainty find errors in absorption and reduced scattering coefficients of 4 % and 1 %, respectively. We expect that higher error in the absorption coefficient can be alleviated with highly scattering samples and that boundary condition confounds may be suppressed by designing a cuvette with high index of refraction. Further work will investigate implementation and reproducibility.

9.
Front Neurol ; 12: 745987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867729

RESUMEN

Objective: Cerebral autoregulation limits the variability of cerebral blood flow (CBF) in the presence of systemic arterial blood pressure (ABP) changes. Monitoring cerebral autoregulation is important in the Neurocritical Care Unit (NCCU) to assess cerebral health. Here, our goal is to identify optimal frequency-domain near-infrared spectroscopy (FD-NIRS) parameters and apply a hemodynamic model of coherent hemodynamics spectroscopy (CHS) to assess cerebral autoregulation in healthy adult subjects and NCCU patients. Methods: In five healthy subjects and three NCCU patients, ABP oscillations at a frequency around 0.065 Hz were induced by cyclic inflation-deflation of pneumatic thigh cuffs. Transfer function analysis based on wavelet transform was performed to measure dynamic relationships between ABP and oscillations in oxy- (O), deoxy- (D), and total- (T) hemoglobin concentrations measured with different FD-NIRS methods. In healthy subjects, we also obtained the dynamic CBF-ABP relationship by using FD-NIRS measurements and the CHS model. In healthy subjects, an interval of hypercapnia was performed to induce cerebral autoregulation impairment. In NCCU patients, the optical measurements of autoregulation were linked to individual clinical diagnoses. Results: In healthy subjects, hypercapnia leads to a more negative phase difference of both O and D oscillations vs. ABP oscillations, which are consistent across different FD-NIRS methods and are highly correlated with a more negative phase difference CBF vs. ABP. In the NCCU, a less negative phase difference of D vs. ABP was observed in one patient as compared to two others, indicating a better autoregulation in that patient. Conclusions: Non-invasive optical measurements of induced phase difference between D and ABP show the strongest sensitivity to cerebral autoregulation. The results from healthy subjects also show that the CHS model, in combination with FD-NIRS, can be applied to measure the CBF-ABP dynamics for a better direct measurement of cerebral autoregulation.

10.
Appl Opt ; 60(25): 7552-7562, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613221

RESUMEN

Absorption spectra (∼600 to 1064 nm) of six tissues in three healthy volunteers were measured by combining dual-slope continuous-wave broadband spectroscopy with self-calibrated frequency-domain measurements of scattering at two wavelengths (690 and 830 nm). The spectral fit with a linear combination of oxy- and deoxyhemoglobin, water, and lipids extinction spectra is improved by a wavelength-independent absorption background. The need to introduce this background is assigned to the inhomogeneous distribution of absorbers in tissue. By using a two-layer model, the relationship between recovered concentrations and their two-layer values was investigated, and the implications for non-invasive tissue spectroscopy are discussed.


Asunto(s)
Tejido Adiposo/química , Mama/química , Músculo Esquelético/química , Espectroscopía Infrarroja Corta/métodos , Adulto , Agua Corporal , Femenino , Voluntarios Sanos , Hemoglobinas/análisis , Humanos , Lípidos/análisis , Masculino , Oxihemoglobinas/análisis , Espectroscopía Infrarroja Corta/instrumentación , Adulto Joven
11.
Biomed Opt Express ; 12(2): 766-789, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33680541

RESUMEN

This study characterizes the sensitivity of noninvasive measurements of cerebral blood flow (CBF) by using frequency-domain near-infrared spectroscopy (FD-NIRS) and coherent hemodynamics spectroscopy (CHS). We considered six FD-NIRS methods: single-distance intensity and phase (SDI and SDϕ), single-slope intensity and phase (SSI and SSϕ), and dual-slope intensity and phase (DSI and DSϕ). Cerebrovascular reactivity (CVR) was obtained from the relative change in measured CBF during a step hypercapnic challenge. Greater measured values of CVR are assigned to a greater sensitivity to cerebral hemodynamics. In a first experiment with eight subjects, CVRSDϕ was greater than CVRSDI (p < 0.01), whereas CVRDSI and CVRDSϕ showed no significant difference (p > 0.5). In a second experiment with four subjects, a 5 mm scattering layer was added between the optical probe and the scalp tissue to increase the extracerebral layer thickness (L ec ), which caused CVRDSϕ to become significantly greater than CVRDSI (p < 0.05). CVRSS measurements yielded similar results as CVRDS measurements but with a greater variability, possibly resulting from instrumental artifacts in SS measurements. Theoretical simulations with two-layered media confirmed that, if the top (extracerebral) layer is more scattering than the bottom (brain) layer, the relative values of CVRDSI and CVRDSϕ depend on L ec . Specifically, the sensitivity to the brain is greater for DSI than DSϕ for a thin extracerebral layer (L ec < 13 mm), whereas it is greater for DSϕ than DSI for a thicker extracerebral layer.

12.
J Biomed Opt ; 26(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33415849

RESUMEN

SIGNIFICANCE: We demonstrated the potential of using domain adaptation on functional near-infrared spectroscopy (fNIRS) data to classify different levels of n-back tasks that involve working memory. AIM: Domain shift in fNIRS data is a challenge in the workload level alignment across different experiment sessions and subjects. To address this problem, two domain adaptation approaches-Gromov-Wasserstein (G-W) and fused Gromov-Wasserstein (FG-W) were used. APPROACH: Specifically, we used labeled data from one session or one subject to classify trials in another session (within the same subject) or another subject. We applied G-W for session-by-session alignment and FG-W for subject-by-subject alignment to fNIRS data acquired during different n-back task levels. We compared these approaches with three supervised methods: multiclass support vector machine (SVM), convolutional neural network (CNN), and recurrent neural network (RNN). RESULTS: In a sample of six subjects, G-W resulted in an alignment accuracy of 68 % ± 4 % (weighted mean ± standard error) for session-by-session alignment, FG-W resulted in an alignment accuracy of 55 % ± 2 % for subject-by-subject alignment. In each of these cases, 25% accuracy represents chance. Alignment accuracy results from both G-W and FG-W are significantly greater than those from SVM, CNN, and RNN. We also showed that removal of motion artifacts from the fNIRS data plays an important role in improving alignment performance. CONCLUSIONS: Domain adaptation has potential for session-by-session and subject-by-subject alignment of mental workload by using fNIRS data.


Asunto(s)
Redes Neurales de la Computación , Espectroscopía Infrarroja Corta , Humanos , Memoria a Corto Plazo , Máquina de Vectores de Soporte
13.
Appl Sci (Basel) ; 11(4)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35719895

RESUMEN

This work presents the design and validation of an instrument for dual-slope broadband diffuse reflectance spectroscopy. This instrument affords calibration-free, continuous-wave measurements of broadband absorbance of optically diffusive media, which may be translated into absolute absorption spectra by adding frequency-domain measurements of scattering at two wavelengths. An experiment on a strongly scattering liquid phantom (milk, water, dyes) confirms the instrument's ability to correctly identify spectral features and measure absolute absorption. This is done by sequentially adding three dyes, each featuring a distinct spectral absorption, to the milk/water phantom. After each dye addition, the absorption spectrum is measured, and it is found to reproduce the spectral features of the added dye. Additionally, the absorption spectrum is compared to the absorption values measured with a commercial frequency-domain instrument at two wavelengths. The measured absorption of the milk/water phantom quantitatively agrees with the known water absorption spectrum (R 2 = 0.98), and the measured absorption of the milk/water/dyes phantom quantitatively agrees with the absorption measured with the frequency-domain instrument in six of eight cases. Additionally, the measured absorption spectrum correctly recovers the concentration of one dye, black India ink, for which we could accurately determine the extinction spectrum (i.e., the specific absorption per unit concentration). The instrumental methods presented in this work can find applications in quantitative spectroscopy of optically diffusive media, and particularly in near-infrared spectroscopy of biological tissue.

14.
Rev Sci Instrum ; 91(9): 093702, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33003793

RESUMEN

We recently proposed a dual-slope technique for diffuse optical spectroscopy and imaging of scattering media. This technique requires a special configuration of light sources and optical detectors to create dual-slope sets. Here, we present methods for designing, optimizing, and building an optical imaging array that features m dual-slope sets to image n voxels. After defining the m × n matrix (S) that describes the sensitivity of the m dual-slope measurements to absorption perturbations in each of the n voxels, we formulate the inverse imaging problem in terms of the Moore-Penrose pseudoinverse matrix of S (S+). This approach allows us to introduce several measures of imaging performance: reconstruction accuracy (correct spatial mapping), crosstalk (incorrect spatial mapping), resolution (point spread function), and localization (offset between actual and reconstructed point perturbations). Furthermore, by considering the singular value decomposition formulation, we show the significance of visualizing the first m right singular vectors of S, whose linear combination generates the reconstructed map. We also describe methods to build a physical array using a three-layer mesh structure (two polyethylene films and polypropylene hook-and-loop fabric) embedded in silicone (PDMS). Finally, we apply these methods to design two arrays and choose one to construct. The chosen array consists of 16 illumination fibers, 10 detection fibers, and 27 dual-slope sets for dual-slope imaging optimized for the size of field of view and localization of absorption perturbations. This particular array is aimed at functional near-infrared spectroscopy of the human brain, but the methods presented here are of general applicability to a variety of devices and imaging scenarios.

15.
Opt Lett ; 45(16): 4464-4467, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796984

RESUMEN

We present theoretical and experimental demonstrations of a novel, to the best of our knowledge, diffuse optical imaging method that is based on the concept of dual slopes (DS) in frequency-domain near-infrared spectroscopy. We consider a special array of sources and detectors that collects intensity (I) and phase (ϕ) data with multiple DS sets. We have recently shown that DSϕ reflectance data features a deeper sensitivity with respect to DSI reflectance data. Here, for the first time, we describe a DS imaging approach based on the Moore-Penrose inverse of the sensitivity matrix for multiple DS data sets. Using a circular 8-source/9-detector array that generates 16 DS data sets at source-detector distances in the range 20-40 mm, we show that DSI images are more sensitive to superficial (<5mm) perturbations, whereas DSϕ images are more sensitive to deeper (>10mm) perturbations in highly scattering media.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35757281

RESUMEN

A quantitative assessment of the level of coherence between two signals is important in many applications. Two biomedically relevant cases are Transfer Function Analysis (TFA) of Cerebral Autoregulation (CA) and Coherent Hemodynamics Spectroscopy (CHS), where the first signal is Arterial Blood Pressure (ABP) and the second signal is either cerebral Blood Flow Velocity (BFV) or cerebral hemoglobin concentration. To determine the time intervals and frequency bands in which the signals are significantly coherent, a coherence threshold is required. This threshold of significant coherence can be found using multiple samples of surrogate data to generate a distribution of coherence. Then the 95 th percentile of the distribution can be used as the threshold corresponding to a significance level α = 0.05. However, storing the entire coherence distribution uses a large amount of computer memory. To address this problem, we have developed an algorithm to determine the coherence threshold with little memory usage. A subfield of data streaming algorithms is devoted to finding quantiles using little memory. This work does not aim to find a new streaming algorithm but rather to develop an algorithm that can be tailored to the needs of applications such as TFA and CHS. The algorithm presented here identifies the coherence thresholds for a wavelet scaleogram using much less memory then what would be required to store the entire coherence distribution.

17.
J Innov Opt Health Sci ; 13(1)2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36340430

RESUMEN

The concept of region of sensitivity is central to the field of diffuse optics and is closely related to the Jacobian matrix used to solve the inverse problem in imaging. It is well-known that, in diffuse reflectance, the region of sensitivity associated with a given source-detector pair is shaped as a banana, and features maximal sensitivity to the portions of the sample that are closest to the source and the detector. We have recently introduced a dual-slope method based on a special arrangement of two sources and two detectors, which results in deeper and more localized regions of sensitivity, resembling the shapes of different kinds of nuts. Here, we report the regions of sensitivity associated with a variety of source-detector arrangements for dual-slope measurements of intensity and phase with frequency-domain spectroscopy (modulation frequency: 140 MHz) in a medium with absorption and reduced scattering coefficients of 0.1 cm-1 and 12 cm-1, respectively. The main result is that the depth of maximum sensitivity, considering only cases that use source-detector separations of 25 and 35 mm, progressively increases as we consider single-distance intensity (2.0 mm), dual-slope intensity (4.6 mm), single-distance phase (7.5 mm), and dual-slope phase (10.9 mm). These results indicate the importance of dual-slope measurements, and even more so of phase measurements, when it is desirable to selectively probe deeper portions of a sample with diffuse optics. This is certainly the case in non-invasive optical studies of brain, muscle, and breast tissue, which are located underneath superficial tissue at variable depths.

18.
J Biophotonics ; 13(1): e201960018, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479582

RESUMEN

We present a first in vivo application of phase dual-slopes (DSϕ), measured with frequency-domain near-infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (ϕ) data collected on the subject's forehead at multiple source-detector distances: Single-distance, single-slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DSϕ. The in vivo results indicate a qualitative difference of phase data (especially DSϕ) and intensity data (especially single-distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DSϕ. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics.


Asunto(s)
Encéfalo , Espectroscopía Infrarroja Corta , Velocidad del Flujo Sanguíneo , Circulación Cerebrovascular , Hemodinámica , Humanos , Sujetos de Investigación
19.
J Opt Soc Am A Opt Image Sci Vis ; 36(10): 1743-1761, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674440

RESUMEN

Using diffusion theory, we show that a dual-slope method is more effective than single-slope methods or single-distance methods at enhancing sensitivity to deeper tissue. The dual-slope method requires a minimum of two sources and two detectors arranged in specially configured arrays. In particular, we present diffusion theory results for a symmetrical linear array of two sources (separated by 55 mm) that sandwich two detectors (separated by 15 mm), for which dual slopes achieve maximal sensitivity at a depth of about 5 mm for direct current (DC) intensity (as measured in continuous-wave spectroscopy) and 11 mm for phase (as measured in frequency-domain spectroscopy) under typical values of the tissue optical properties (absorption coefficient: ∼0.01mm-1, reduced scattering coefficient: ∼1mm-1). This result is a major advance over single-distance or single-slope data, which feature maximal sensitivity to shallow tissue (<2mm for the intensity, <5mm for the phase).

20.
Biomed Opt Express ; 10(4): 2117-2134, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31061774

RESUMEN

We propose a new near-infrared spectroscopy (NIRS) method for quantitative measurements of cerebral blood flow (CBF). Because this method uses concepts of coherent hemodynamics spectroscopy (CHS), we identify this new method with the acronym NIRS-CHS. We tested this method on the prefrontal cortex of six healthy human subjects during mean arterial pressure (MAP) transients induced by the rapid deflation of pneumatic thigh cuffs. A comparison of CBF dynamics measured with NIRS-CHS and with diffuse correlation spectroscopy (DCS) showed a good agreement for characteristic times of the CBF transient. We also report absolute measurements of baseline CBF with NIRS-CHS (69 ± 6 ml/100g/min over the six subjects). NIRS-CHS can provide more accurate measurements of CBF with respect to previously reported NIRS surrogates of CBF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...