Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 8(372): ra36, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25872871

RESUMEN

Most bacteria can form multicellular communities called biofilms on biotic and abiotic surfaces. This multicellular response to surface contact correlates with an increased resistance to various adverse environmental conditions, including those encountered during infections of the human host and exposure to antimicrobial compounds. Biofilm formation occurs when freely swimming (planktonic) cells encounter a surface, which stimulates the chemosensory-like, surface-sensing system Wsp and leads to generation of the intracellular second messenger 3',5'-cyclic-di-guanosine monophosphate (c-di-GMP). We identified adaptive mutations in a clinical small colony variant (SCV) of Pseudomonas aeruginosa and correlated their presence with self-aggregating growth behavior and an enhanced capacity to form biofilms. We present evidence that a point mutation in the 5' untranslated region of the accBC gene cluster, which encodes components of an enzyme responsible for fatty acid biosynthesis, was responsible for a stabilized mRNA structure that resulted in reduced translational efficiency and an increase in the proportion of short-chain fatty acids in the plasma membrane. We propose a model in which these changes in P. aeruginosa serve as a signal for the Wsp system to constitutively produce increased amounts of c-di-GMP and thus play a role in the regulation of adhesion-stimulated bacterial responses.


Asunto(s)
Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Regiones no Traducidas 5'/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biopelículas , GMP Cíclico/biosíntesis , Citosol/efectos de los fármacos , Citosol/metabolismo , Ácidos Grasos/metabolismo , Familia de Multigenes/genética , Conformación de Ácido Nucleico , Fenotipo , Biosíntesis de Proteínas/genética , Pseudomonas aeruginosa/fisiología , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cloruro de Sodio/farmacología
2.
Mol Microbiol ; 93(3): 439-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24942809

RESUMEN

In contrast to numerous enzymes involved in c-di-GMP synthesis and degradation in enterobacteria, only a handful of c-di-GMP receptors/effectors have been identified. In search of new c-di-GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope-labelled c-di-GMP. We uncovered three new candidate c-di-GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c-di-GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, GGDEF I-site like domain. The RxGD motif of the GIL domain is required for c-di-GMP binding, similar to the c-di-GMP-binding I-site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c-di-GMP-binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c-di-GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two-tiered c-di-GMP-dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/biosíntesis , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glucosiltransferasas/genética , Proteínas Bacterianas/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Glucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Klebsiella pneumoniae/metabolismo , Mutagénesis Sitio-Dirigida , Operón , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Salmonella typhimurium/metabolismo , Transducción de Señal
3.
J Bacteriol ; 196(2): 345-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24187091

RESUMEN

Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Regulón , Factor sigma/metabolismo , Factores de Virulencia/biosíntesis , Sitios de Unión , Inmunoprecipitación de Cromatina , Medios de Cultivo/química , Eliminación de Gen , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Presión Osmótica , Unión Proteica , Factor sigma/genética
4.
Mol Microbiol ; 90(6): 1216-32, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24127899

RESUMEN

The ubiquitous second messenger c-di-GMP regulates the switching of bacterial lifestyles from motility to sessility and acute to chronic virulence to adjust bacterial fitness to altered environmental conditions. Conventionally, EAL proteins being c-di-GMP phosphodiesterases promote motility and acute virulence phenotypes such as invasion into epithelial cells and inhibit biofilm formation. We report here that in contradiction, the EAL-like protein STM1697 of Salmonella typhimurium suppresses motility, invasion into HT-29 epithelial cell line and secretion of the type three secretion system 1 effector protein SipA, whereas it promotes rdar biofilm formation and CsgD expression. STM1697 can, however, functionally replace the EAL-like protein STM1344 and vice versa, whereby both proteins neither degrade nor bind c-di-GMP. Like STM1344, STM1697 suppresses the transcription of class 2 and class 3 flagella regulon genes by binding to FlhD, a component of the master regulator of the flagella regulon FlhD4 C2 and act additively under numerous conditions. Interestingly, the interaction interface of STM1697 with FlhD2 is distinct from its paralogue STM1344. We predict that the stand alone EAL domain proteins STM1697 and STM1344 belong to a subclass of EAL domain proteins in S. typhimurium, which are all involved in motility, biofilm and virulence regulation through interaction with proteins that regulate flagella function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Flagelos/fisiología , Salmonella typhimurium/fisiología , Salmonella typhimurium/patogenicidad , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Flagelos/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Células HT29 , Humanos , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento , Fenotipo , Hidrolasas Diéster Fosfóricas/metabolismo , Conformación Proteica , Infecciones por Salmonella , Salmonella typhimurium/genética , Virulencia
5.
PLoS Pathog ; 8(6): e1002760, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719254

RESUMEN

The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Bacterianas/metabolismo , Fibrosis Quística/microbiología , Proteínas de la Membrana/metabolismo , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa , Transducción de Señal/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fibrosis Quística/complicaciones , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Mutación , Reacción en Cadena de la Polimerasa , Conformación Proteica , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...