Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994671

RESUMEN

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Asunto(s)
Proteínas del Dominio Armadillo , Cisteína , Proteínas del Citoesqueleto , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Axones , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Homeostasis , NAD+ Nucleosidasa , Proteómica
2.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483372

RESUMEN

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Asunto(s)
Química Clic , Imagen Óptica , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Mamíferos , Ratones , Imagen Óptica/métodos
3.
J Pharmacol Exp Ther ; 367(3): 494-508, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30305428

RESUMEN

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-4-chlorobenzyl)piperazine-1-carboxylate]. We used ABD-1970 to confirm the role of MGLL in human systems and to define the relationship between MGLL target engagement, brain 2-AG concentrations, and efficacy. Because MGLL contributes to arachidonic acid metabolism in a subset of rodent tissues, we further used ABD-1970 to evaluate whether selective MGLL inhibition would affect prostanoid production in several human assays known to be sensitive to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain 2-AG content and displayed antinociceptive and antipruritic activity in a battery of rodent models (ED50 values of 1-2 mg/kg). The antinociceptive effects of ABD-1970 were potentiated when combined with analgesic standards of care and occurred without overt cannabimimetic effects. ABD-1970 also blocked 2-AG hydrolysis in human brain tissue and elevated 2-AG content in human blood without affecting stimulated prostanoid production. These findings support the clinical development of MGLL inhibitors as a differentiated mechanism to treat pain and other neurologic disorders.


Asunto(s)
Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Antipruriginosos/farmacología , Ácidos Araquidónicos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Inhibidores de la Ciclooxigenasa/farmacología , Glicéridos/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Células PC-3 , Dolor/tratamiento farmacológico , Dolor/metabolismo , Piperidinas/farmacología , Prostaglandinas/farmacología , Ratas , Ratas Sprague-Dawley , Roedores
4.
J Med Chem ; 61(20): 9062-9084, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30067909

RESUMEN

The serine hydrolase monoacylglycerol lipase (MGLL) converts the endogenous cannabinoid receptor agonist 2-arachidonoylglycerol (2-AG) and other monoacylglycerols into fatty acids and glycerol. Genetic or pharmacological inactivation of MGLL leads to elevation in 2-AG in the central nervous system and corresponding reductions in arachidonic acid and eicosanoids, producing antinociceptive, anxiolytic, and antineuroinflammatory effects without inducing the full spectrum of psychoactive effects of direct cannabinoid receptor agonists. Here, we report the optimization of hexafluoroisopropyl carbamate-based irreversible inhibitors of MGLL, culminating in a highly potent, selective, and orally available, CNS-penetrant MGLL inhibitor, 28 (ABX-1431). Activity-based protein profiling experiments verify the exquisite selectivity of 28 for MGLL versus other members of the serine hydrolase class. In vivo, 28 inhibits MGLL activity in rodent brain (ED50 = 0.5-1.4 mg/kg), increases brain 2-AG concentrations, and suppresses pain behavior in the rat formalin pain model. ABX-1431 (28) is currently under evaluation in human clinical trials.


Asunto(s)
Descubrimiento de Drogas , Monoacilglicerol Lipasas/antagonistas & inhibidores , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/enzimología , Piperazina/farmacología , Piperazinas/farmacología , Pirrolidinas/farmacología , Animales , Perros , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Terapia Molecular Dirigida , Dolor/tratamiento farmacológico , Dolor/enzimología , Piperazina/farmacocinética , Piperazina/uso terapéutico , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapéutico , Ratas , Distribución Tisular
5.
Cell Rep ; 12(5): 798-808, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26212325

RESUMEN

The endocannabinoid 2-arachidonoylglycerol (2-AG) is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis-a reaction that is principally performed by monoacylglycerol lipase (MAGL). MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to the regulation of 2-AG activity in vivo remain poorly understood. Here, we genetically dissect the cellular anatomy of MAGL-mediated 2-AG metabolism in the brain and show that neurons and astrocytes coordinately regulate 2-AG content and endocannabinoid-dependent forms of synaptic plasticity and behavior. We also find that astrocytic MAGL is mainly responsible for converting 2-AG to neuroinflammatory prostaglandins via a mechanism that may involve transcellular shuttling of lipid substrates. Astrocytic-neuronal interplay thus provides distributed oversight of 2-AG metabolism and function and, through doing so, protects the nervous system from excessive CB1 receptor activation and promotes endocannabinoid crosstalk with other lipid transmitter systems.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Astrocitos/metabolismo , Comunicación Celular/fisiología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Neuronas/metabolismo , Animales , Ácidos Araquidónicos/genética , Astrocitos/citología , Endocannabinoides/genética , Glicéridos/genética , Ratones , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Neuronas/citología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
6.
Neuron ; 83(2): 361-371, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25033180

RESUMEN

The serine hydrolase α/ß-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence and severity. This effect is retained in Cnr1(-/-) or Cnr2(-/-) mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of juvenile Huntington's disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Encéfalo/efectos de los fármacos , Carbamatos/uso terapéutico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/fisiopatología , Carbamatos/farmacología , Masculino , Ratones , Ratones Noqueados , Pentilenotetrazol , Receptores de Cannabinoides/genética , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
7.
Cell Rep ; 5(2): 508-20, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24095738

RESUMEN

The serine hydrolase α/ß hydrolase domain 6 (ABHD6) has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG) in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs) to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6's role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.


Asunto(s)
Síndrome Metabólico/enzimología , Monoacilglicerol Lipasas/metabolismo , Secuencia de Aminoácidos , Animales , Dieta Alta en Grasa , Endocannabinoides/metabolismo , Ácidos Grasos/biosíntesis , Humanos , Hígado/enzimología , Hígado/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/genética , Obesidad/prevención & control , Oligonucleótidos Antisentido/metabolismo , Receptor Cannabinoide CB1/metabolismo , Alineación de Secuencia , Transducción de Señal
8.
Hum Mutat ; 34(12): 1672-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24027063

RESUMEN

PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) is a recently described autosomal-recessive neurodegenerative disease caused by mutations in the α-ß-hydrolase domain-containing 12 gene (ABHD12). Only five homozygous ABHD12 mutations have been reported and the pathogenesis of PHARC remains unclear. We evaluated a woman who manifested short stature as well as the typical features of PHARC. Sequence analysis of ABHD12 revealed a novel heterozygous c.1129A>T (p.Lys377*) mutation. Targeted comparative genomic hybridization detected a 59-kb deletion that encompasses exon 1 of ABHD12 and exons 1-4 of an adjacent gene, GINS1, and includes the promoters of both genes. The heterozygous deletion was also carried by the patient's asymptomatic mother. Quantitative reverse transcription-PCR demonstrated ∼50% decreased expression of ABHD12 RNA in lymphoblastoid cell lines from both individuals. Activity-based protein profiling of serine hydrolases revealed absence of ABHD12 hydrolase activity in the patient and 50% reduction in her mother. This is the first report of compound heterozygosity in PHARC and the first study to describe how a mutation might affect ABHD12 expression and function. The possible involvement of haploinsufficiency for GINS1, a DNA replication complex protein, in the short stature of the patient and her mother requires further studies.


Asunto(s)
Ataxia/genética , Catarata/genética , Monoacilglicerol Lipasas/genética , Mutación , Polineuropatías/genética , Retinitis Pigmentosa/genética , Adulto , Ataxia/diagnóstico , Ataxia/metabolismo , Catarata/diagnóstico , Catarata/metabolismo , Femenino , Expresión Génica , Orden Génico , Heterocigoto , Humanos , Masculino , Monoacilglicerol Lipasas/metabolismo , Linaje , Fenotipo , Polineuropatías/diagnóstico , Polineuropatías/metabolismo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Eliminación de Secuencia , Transcripción Genética
9.
Pharmacol Rev ; 65(2): 849-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23512546

RESUMEN

The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Endocannabinoides/metabolismo , Inhibidores Enzimáticos , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Ácidos Araquidónicos/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/biosíntesis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Glicéridos/metabolismo , Humanos , Ligandos , Estructura Molecular , Dolor/tratamiento farmacológico , Dolor/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Transducción de Señal/efectos de los fármacos , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(4): 1500-5, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297193

RESUMEN

Advances in human genetics are leading to the discovery of new disease-causing mutations at a remarkable rate. Many such mutations, however, occur in genes that encode for proteins of unknown function, which limits our molecular understanding of, and ability to devise treatments for, human disease. Here, we use untargeted metabolomics combined with a genetic mouse model to determine that the poorly characterized serine hydrolase α/ß-hydrolase domain-containing (ABHD)12, mutations in which cause the human neurodegenerative disorder PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and cataract), is a principal lysophosphatidylserine (LPS) lipase in the mammalian brain. ABHD12(-/-) mice display massive increases in a rare set of very long chain LPS lipids that have been previously reported as Toll-like receptor 2 activators. We confirm that recombinant ABHD12 protein exhibits robust LPS lipase activity, which is also substantially reduced in ABHD12(-/-) brain tissue. Notably, elevations in brain LPS lipids in ABHD12(-/-) mice occur early in life (2-6 mo) and are followed by age-dependent increases in microglial activation and auditory and motor defects that resemble the behavioral phenotypes of human PHARC patients. Taken together, our data provide a molecular model for PHARC, where disruption of ABHD12 causes deregulated LPS metabolism and the accumulation of proinflammatory lipids that promote microglial and neurobehavioral abnormalities.


Asunto(s)
Ataxia/genética , Ataxia/metabolismo , Encéfalo/metabolismo , Catarata/genética , Catarata/metabolismo , Lisofosfolípidos/metabolismo , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Polineuropatías/genética , Polineuropatías/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Animales , Ataxia/patología , Ataxia/fisiopatología , Conducta Animal/fisiología , Encéfalo/patología , Catarata/patología , Catarata/fisiopatología , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Modelos Neurológicos , Monoacilglicerol Lipasas/deficiencia , Mutación , Fenotipo , Polineuropatías/patología , Polineuropatías/fisiopatología , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/fisiopatología
11.
Br J Pharmacol ; 165(8): 2485-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21506952

RESUMEN

BACKGROUND AND PURPOSE: Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ(9) -tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH: Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. KEY RESULTS: FAAH (-/-) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. CONCLUSIONS AND IMPLICATIONS: AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Piperidinas/uso terapéutico , Piridinas/uso terapéutico , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Ácidos Araquidónicos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Endocannabinoides , Inhibidores Enzimáticos/farmacología , Femenino , Glicéridos/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Piridinas/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
12.
Science ; 334(6057): 809-13, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22021672

RESUMEN

Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Glicéridos/metabolismo , Inflamación/metabolismo , Monoacilglicerol Lipasas/metabolismo , Prostaglandinas/metabolismo , Animales , Ácido Araquidónico/metabolismo , Benzodioxoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ciclooxigenasa 1/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Inhibidores Enzimáticos/farmacología , Hidrólisis , Inflamación/patología , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Pulmón/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/genética , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Piperidinas/farmacología , Prostaglandinas/biosíntesis , Transducción de Señal
13.
J Neurosci ; 31(38): 13420-30, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940435

RESUMEN

Endocannabinoid (eCB) signaling is tightly regulated by eCB biosynthetic and degradative enzymes. The eCB 2-arachidonoylglycerol (2-AG) is hydrolyzed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB signaling, synaptic function, and learning behavior were altered in MAGL knock-out mice. We report that MAGL⁻/⁻ mice exhibited prolonged depolarization-induced suppression of inhibition (DSI) in hippocampal CA1 pyramidal neurons, providing genetic evidence that the inactivation of 2-AG by MAGL determines the time course of the eCB-mediated retrograde synaptic depression. CB1 receptor antagonists enhanced basal IPSCs in CA1 pyramidal neurons in MAGL⁻/⁻ mice, while the magnitude of DSI or CB1 receptor agonist-induced depression of IPSCs was decreased in MAGL⁻/⁻ mice. These results suggest that 2-AG elevations in MAGL⁻/⁻ mice cause tonic activation and partial desensitization of CB1 receptors. Genetic deletion of MAGL selectively enhanced theta burst stimulation (TBS)-induced long-term potentiation (LTP) in the CA1 region of hippocampal slices but had no significant effect on LTP induced by high-frequency stimulation or long-term depression induced by low-frequency stimulation. The enhancement of TBS-LTP in MAGL⁻/⁻ mice appears to be mediated by 2-AG-induced suppression of GABA(A) receptor-mediated inhibition. MAGL⁻/⁻ mice exhibited enhanced learning as shown by improved performance in novel object recognition and Morris water maze. These results indicate that genetic deletion of MAGL causes profound changes in eCB signaling, long-term synaptic plasticity, and learning behavior.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Aprendizaje/fisiología , Memoria/fisiología , Monoacilglicerol Lipasas/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos , Femenino , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/genética , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Inhibición Neural/genética , Inhibición Neural/fisiología , Plasticidad Neuronal/genética , Neuronas/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Reconocimiento en Psicología/fisiología , Transducción de Señal/genética
14.
J Physiol ; 589(Pt 20): 4847-55, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21911610

RESUMEN

The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is hydrolysed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB-mediated retrograde synaptic depression in cerebellar slices was altered in MAGL knockout (MAGL(-/-)) mice. Depolarization-induced suppression of excitation (DSE) and metabotropic glutamate receptor (mGluR1)-mediated synaptic depression are mediated by 2-AG-induced activation of CB(1) receptors. We show that genetic deletion of MAGL prolonged DSE at parallel fibre (PF) or climbing fibre (CF) to Purkinje cell (PC) synapses. Likewise, mGluR1-mediated synaptic depression, induced either by high-frequency stimulation of PF or mGluR1 agonist DHPG, was prolonged in MAGL(-/-) mice. About 15% of 2-AG in the brain is hydrolysed by serine hydrolase α-ß-hydrolase domain 6 and 12 (ABHD6 and ABHD12). However, the selective ABHD6 inhibitor WWL123 had no significant effect on cerebellar DSE in MAGL(+/+) and (-/-) mice. The CB(1) receptor antagonist SR141716 significantly increased the amplitude of basal excitatory postsynaptic currents (EPSCs) in MAGL(-/-) mice but not in MAGL(+/+) mice. Conversely, the CB(1) agonist WIN55212 induced less depression of basal EPSCs in MAGL(-/-) mice than in MAGL(+/+) mice. These results provide genetic evidence that inactivation of 2-AG by MAGL determines the time course of eCB-mediated retrograde synaptic depression and that genetic deletion of MAGL causes tonic activation and consequential desensitization of CB(1) receptors.


Asunto(s)
Ácidos Araquidónicos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Cerebelo/fisiología , Endocannabinoides , Glicéridos/farmacología , Monoacilglicerol Lipasas/deficiencia , Receptor Cannabinoide CB1/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Cerebelo/efectos de los fármacos , Femenino , Eliminación de Gen , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Técnicas de Placa-Clamp , Células de Purkinje/efectos de los fármacos , Células de Purkinje/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores
15.
J Pharmacol Exp Ther ; 338(1): 114-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21505060

RESUMEN

The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAH's catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (k(inact)/K(i) = 40,300 M(-1)s(-1); IC(50) = 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freund's adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/enzimología , Piridazinas/farmacología , Piridazinas/uso terapéutico , Urea/análogos & derivados , Amidohidrolasas/metabolismo , Animales , Inhibidores Enzimáticos/química , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Piridazinas/química , Ratas , Ratas Sprague-Dawley , Urea/química , Urea/farmacología , Urea/uso terapéutico
16.
Proc Natl Acad Sci U S A ; 107(49): 20941-6, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21084632

RESUMEN

Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems. We show here that the vast majority (> 80%) of mammalian metabolic SHs can be labeled in proteomes by a single, active site-directed fluorophosphonate probe. We exploit this universal activity-based assay in a library-versus-library format to screen 70+ SHs against 140+ structurally diverse carbamates. Lead inhibitors were discovered for ∼40% of the screened enzymes, including many poorly characterized SHs. Global profiles identified carbamate inhibitors that discriminate among highly sequence-related SHs and, conversely, enzymes that share inhibitor sensitivity profiles despite lacking sequence homology. These findings indicate that sequence relatedness is not a strong predictor of shared pharmacology within the SH superfamily. Finally, we show that lead carbamate inhibitors can be optimized into pharmacological probes that inactivate individual SHs with high specificity in vivo.


Asunto(s)
Carbamatos/farmacología , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Hidrolasas/antagonistas & inhibidores , Serina , Bibliotecas de Moléculas Pequeñas/farmacología , Carbamatos/uso terapéutico , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Fluoruros , Humanos , Sondas Moleculares , Fosfatos , Unión Proteica , Proteoma , Especificidad por Sustrato
17.
Chem Biol ; 17(11): 1256-66, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095576

RESUMEN

The enzyme fatty acid amide hydrolase (FAAH) catalyzes the in vivo degradation of the endocannabinoid anandamide, thus controlling its action at receptors. A novel FAAH inhibitor, AM3506, normalizes the elevated blood pressure and cardiac contractility of spontaneously hypertensive rats (SHR) without affecting these parameters in normotensive rats. These effects are due to blockade of FAAH and a corresponding rise in brain anandamide levels, resulting in CB1 receptor-mediated decrease in sympathetic tone. The supersensitivity of SHR to CB1 receptor-mediated cardiovascular depression is related to increased G protein coupling of CB1 receptors. Importantly, AM3506 does not elicit hyperglycemia and insulin resistance seen with other FAAH inhibitors or in FAAH⁻/⁻ mice, which is related to its inability to inhibit FAAH in the liver due to rapid hepatic uptake and metabolism. This unique activity profile offers improved therapeutic value in hypertension.


Asunto(s)
Alcanosulfonatos/química , Amidohidrolasas/antagonistas & inhibidores , Antihipertensivos/química , Inhibidores Enzimáticos/química , Fenoles/química , Alcanosulfonatos/farmacología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Antihipertensivos/uso terapéutico , Ácidos Araquidónicos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides , Inhibidores Enzimáticos/uso terapéutico , Hipertensión/tratamiento farmacológico , Masculino , Ratones , Ratones Noqueados , Fenoles/farmacología , Alcamidas Poliinsaturadas/metabolismo , Ratas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo
18.
Mol Pharmacol ; 78(6): 993-5, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20952498

RESUMEN

The signaling capacity of endogenous cannabinoids ("endocannabinoids") is tightly regulated by degradative enzymes. This Perspective highlights a research article in this issue (p. 996) in which the authors show that genetic disruption of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), causes marked elevations in 2-AG levels that lead to desensitization of brain cannabinoid receptors. These findings highlight the central role that MAGL plays in endocannabinoid metabolism in vivo and reveal that excessive 2-AG signaling can lead to functional antagonism of the brain cannabinoid system.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Transducción de Señal/fisiología , Animales , Ácidos Araquidónicos/fisiología , Regulación hacia Abajo/fisiología , Glicéridos/fisiología , Humanos , Monoacilglicerol Lipasas/fisiología , Receptores de Cannabinoides/fisiología
19.
Nat Neurosci ; 13(9): 1113-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20729846

RESUMEN

Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. We found that a similar form of functional antagonism was produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol. After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of Mgll (encoding MAGL). Chronic MAGL blockade also caused physical dependence, impaired endocannabinoid-dependent synaptic plasticity and desensitized brain CB1 receptors. These data contrast with blockade of fatty acid amide hydrolase, an enzyme that degrades the other major endocannabinoid anandamide, which produced sustained analgesia without impairing CB1 receptors. Thus, individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Monoacilglicerol Lipasas/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Analgésicos/administración & dosificación , Analgésicos/farmacología , Animales , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Moduladores de Receptores de Cannabinoides/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/genética , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Piperidinas/administración & dosificación , Piperidinas/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
20.
Nat Neurosci ; 13(8): 951-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20657592

RESUMEN

The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase alpha-beta-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB2-mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activity-dependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB1-dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Encéfalo/metabolismo , Glicéridos/metabolismo , Monoacilglicerol Lipasas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/fisiología , Animales , Células COS , Línea Celular , Movimiento Celular , Chlorocebus aethiops , Endocannabinoides , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microscopía Electrónica de Transmisión , Neuronas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...