Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 4839, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446752

RESUMEN

Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Bosques , Árboles/fisiología , Ecosistema , Europa (Continente) , Agricultura Forestal/tendencias , Humanos
2.
Nature ; 540(7632): 266-269, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27919075

RESUMEN

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in ß-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing ß-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on ß-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in ß-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the ß-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Asunto(s)
Agricultura , Biodiversidad , Pradera , Actividades Humanas , Animales , Artrópodos , Aves , Bryopsida , Quirópteros , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Cadena Alimentaria , Hongos , Alemania , Líquenes , Plantas , Microbiología del Suelo , Especificidad de la Especie
3.
Nature ; 536(7617): 456-9, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533038

RESUMEN

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Animales , Biomasa , Alemania , Pradera , Herbivoria , Insectos , Microbiología , Modelos Biológicos , Plantas
4.
Artículo en Inglés | MEDLINE | ID: mdl-27114572

RESUMEN

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Asunto(s)
Biodiversidad , Pradera , Agricultura , Conservación de los Recursos Naturales , Alemania , Densidad de Población
5.
Ecol Lett ; 18(8): 834-843, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26096863

RESUMEN

Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Asunto(s)
Agricultura/métodos , Biodiversidad , Pradera , Alemania , Modelos Lineales , Suelo/química
6.
PLoS One ; 9(7): e103252, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25061934

RESUMEN

Phylogenetic diversity (PD) has been successfully used as a complement to classical measures of biological diversity such as species richness or functional diversity. By considering the phylogenetic history of species, PD broadly summarizes the trait space within a community. This covers amongst others complex physiological or biochemical traits that are often not considered in estimates of functional diversity, but may be important for the understanding of community assembly and the relationship between diversity and ecosystem functions. In this study we analyzed the relationship between PD of plant communities and land-use intensification in 150 local grassland plots in three regions in Germany. Specifically we asked whether PD decreases with land-use intensification and if so, whether the relationship is robust across different regions. Overall, we found that species richness decreased along land-use gradients the results however differed for common and rare species assemblages. PD only weakly decreased with increasing land-use intensity. The strength of the relationship thereby varied among regions and PD metrics used. From our results we suggest that there is no general relationship between PD and land-use intensification probably due to lack of phylogenetic conservatism in land-use sensitive traits. Nevertheless, we suggest that depending on specific regional idiosyncrasies the consideration of PD as a complement to other measures of diversity can be useful.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Plantas/genética , Alemania , Pradera , Humanos
7.
PLoS One ; 8(12): e84913, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358373

RESUMEN

Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m × 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.


Asunto(s)
Briófitas , Ecosistema , Líquenes , Árboles , Biodiversidad
8.
Luminescence ; 17(6): 370-80, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12444590

RESUMEN

The response of the bioluminescent dinoflagellate Pyrocystis fusiformis was investigated for different hydraulic conditions ('hydromechanical stimulation'). Pipe flow and oscillating shear produced luminescence, whereas changes in hydrostatic pressure were not stimulating. More intense fluid motion led to higher intensity, mainly due to a higher probability of cell response. The organism was also able to emit light in a glucose-salt mixture. The experiments suggest that the cells are effectively stimulated if the flow conditions change in time.


Asunto(s)
Luminiscencia , Plancton/química , Animales , Diseño de Equipo , Presión , Reología , Estrés Mecánico
9.
J Colloid Interface Sci ; 225(2): 273-284, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11254264

RESUMEN

Preflocculated ferric hydroxide flocs were subjected to either a simple shear flow or a two-dimensional straining flow, and their motion was optically observed. Digital image analysis was applied to extract information on orientation and deformation from the digitized frames. It was found that the simple shear flow led to a rotation of the flocs whose motion can be understood from the behavior of a solid ellipsoid. In the extensional flow, no continuous rotation occurred and flocs were broken apart along the axis of straining. The rupture forces estimated from an ellipsoid model were found to be in the range of 0.1 N/m(2). Copyright 2000 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...