Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 718933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659147

RESUMEN

The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.

2.
Front Microbiol ; 11: 517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431671

RESUMEN

The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.

3.
iScience ; 23(4): 101022, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283525

RESUMEN

Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling.

4.
Antioxidants (Basel) ; 8(6)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159429

RESUMEN

Little is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom Skeletonema marinoi. We investigated the role of light regime on the concentration of ascorbic acid, phenolic compounds and among them flavonoids and their connection with photoprotective mechanisms. We compared three high light conditions, differing in either light intensity or wave distribution, with two low light conditions, differing in photoperiod, and a prolonged darkness. The change in light distribution, from sinusoidal to square wave distribution was also investigated. Results revealed a strong link between photoprotection, mainly relied on xanthophyll cycle operation, and the antioxidant molecules and activity modulation. This study paves the way for further investigation on the antioxidant capacity of diatoms, which resulted to be strongly forced by light conditions, also in the view of their potential utilization in nutraceuticals or new functional cosmetic products.

5.
Int J Dev Biol ; 62(4-5): 311-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29877570

RESUMEN

Understanding the dynamic cellular behaviours driving morphogenesis and regeneration is a long-standing challenge in biology. Live imaging, together with genetically encoded reporters, may provide the necessary tool to address this issue, permitting the in vivo monitoring of the spatial and temporal expression dynamics of a gene of interest during a variety of developmental processes. Canonical Wnt/ß-catenin signalling controls a plethora of cellular activities during development, regeneration and adulthood throughout the animal kingdom. Several reporters have been produced in animal models to reveal sites of active Wnt signalling. In order to monitor in vivo Wnt/ß-catenin signalling activity in the freshwater polyp Hydra vulgaris, we generated a ß-cat-eGFP transgenic Hydra, in which eGFP is driven by the Hydra ß-catenin promoter. We characterized the expression dynamics during budding, regeneration and chemical activation of the Wnt/ß-cat signalling pathway using light sheet fluorescence microscopy. Live imaging of the ß-cat-eGFP lines recapitulated the previously reported endogenous expression pattern of ß-catenin and revealed the dynamic appearance of novel sites of Wnt/ß-catenin signalling, that earlier evaded detection by mean of in situ hybridization. By combining the Wnt activity read-out efficiency of the ß-catenin promoter with advanced imaging, we have created a novel model system to monitor in real time the activity of Hydra ß-cat regulatory sequences in vivo, and open the path to reveal ß-catenin modulation in many other physiological contexts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hydra/embriología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Hydra/genética , Hydra/metabolismo , Microscopía Fluorescente , Proteínas Wnt/metabolismo , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA