Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 247: 118275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246295

RESUMEN

The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.


Asunto(s)
Acetamidas , Alanina/análogos & derivados , Neonicotinoides , Plaguicidas , Triazinas , Contaminantes Químicos del Agua , Humedales , Plaguicidas/análisis , Agricultura/métodos , Agua , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Pollut Res Int ; 29(5): 7283-7299, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34476700

RESUMEN

A non-waterproofed surface flow constructed wetland (SFCW), treating agricultural drainage water in Northern Italy, was investigated to gain information on the potential ability for effective pesticide abatement. A mixture of insecticide imidacloprid, fungicide dimethomorph, and herbicide glyphosate was applied, by simulating a single rain event, into 470-m-long water course of the SFCW meanders. The pesticides were monitored in the wetland water and soil for about 2 months after treatment. Even though the distribution of pesticides in the wetland was not uniform, for each of them, a mean dissipation of 50% of the applied amount was already observed at ≤7 days. The dissipation trend in the water phase of the wetland fitted (r2 ≥ 0.8166) the first-order model with calculated DT50 of 20.6, 12.0, 5.8, and 36.7 days for imidacloprid, dimethomorph, glyphosate, and the glyphosate metabolite AMPA, respectively. The pesticide behavior was interpreted based on the chemical and physical characteristics of both the substances and the water-soil system. Despite the fast abatement of glyphosate, traces were detected in the water until the end of the trial. The formation of soluble 1:1 complex between glyphosate and calcium, the most representative cation in the wetland water, was highlighted by infrared analyses. Such a soluble complex was supposed to keep traces of the herbicide in solution.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Granjas , Herbicidas/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Humedales
3.
Front Microbiol ; 11: 1416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793126

RESUMEN

Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs' diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.

4.
Sci Rep ; 9(1): 14127, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576006

RESUMEN

LED lighting in indoor farming systems allows to modulate the spectrum to fit plant needs. Red (R) and blue (B) lights are often used, being highly active for photosynthesis. The effect of R and B spectral components on lettuce plant physiology and biochemistry and resource use efficiency were studied. Five red:blue (RB) ratios (0.5-1-2-3-4) supplied by LED and a fluorescent control (RB = 1) were tested in six experiments in controlled conditions (PPFD = 215 µmol m-2 s-1, daylength 16 h). LED lighting increased yield (1.6 folds) and energy use efficiency (2.8 folds) as compared with fluorescent lamps. Adoption of RB = 3 maximised yield (by 2 folds as compared with RB = 0.5), also increasing leaf chlorophyll and flavonoids concentrations and the uptake of nitrogen, phosphorus, potassium and magnesium. As the red portion of the spectrum increased, photosystem II quantum efficiency decreased but transpiration decreased more rapidly, resulting in increased water use efficiency up to RB = 3 (75 g FW L-1 H2O). The transpiration decrease was accompanied by lower stomatal conductance, which was associated to lower stomatal density, despite an increased stomatal size. Both energy and land surface use efficiency were highest at RB ≥ 3. We hereby suggest a RB ratio of 3 for sustainable indoor lettuce cultivation.


Asunto(s)
Lactuca/fisiología , Fotosíntesis/fisiología , Clorofila/metabolismo , Color , Lactuca/metabolismo , Luz , Iluminación/métodos , Fotoperiodo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
5.
Front Plant Sci ; 10: 305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918510

RESUMEN

Indoor plant cultivation can result in significantly improved resource use efficiency (surface, water, and nutrients) as compared to traditional growing systems, but illumination costs are still high. LEDs (light emitting diodes) are gaining attention for indoor cultivation because of their ability to provide light of different spectra. In the light spectrum, red and blue regions are often considered the major plants' energy sources for photosynthetic CO2 assimilation. This study aims at identifying the role played by red:blue (R:B) ratio on the resource use efficiency of indoor basil cultivation, linking the physiological response to light to changes in yield and nutritional properties. Basil plants were cultivated in growth chambers under five LED light regimens characterized by different R:B ratios ranging from 0.5 to 4 (respectively, RB0.5, RB1, RB2, RB3, and RB4), using fluorescent lamps as control (CK1). A photosynthetic photon flux density of 215 µmol m-2 s-1 was provided for 16 h per day. The greatest biomass production was associated with LED lighting as compared with fluorescent lamp. Despite a reduction in both stomatal conductance and PSII quantum efficiency, adoption of RB3 resulted in higher yield and chlorophyll content, leading to improved use efficiency for water and energy. Antioxidant activity followed a spectral-response function, with optimum associated with RB3. A low RB ratio (0.5) reduced the relative content of several volatiles, as compared to CK1 and RB ≥ 2. Moreover, mineral leaf concentration (g g-1 DW) and total content in plant (g plant-1) were influences by light quality, resulting in greater N, P, K, Ca, Mg, and Fe accumulation in plants cultivated with RB3. Contrarily, nutrient use efficiency was increased in RB ≤ 1. From this study it can be concluded that a RB ratio of 3 provides optimal growing conditions for indoor cultivation of basil, fostering improved performances in terms of growth, physiological and metabolic functions, and resources use efficiency.

6.
Chemosphere ; 191: 365-372, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29049960

RESUMEN

Several anthropogenic contaminants, including pesticides and heavy metals, can affect honey bee health. The effects of mixtures of heavy metals and pesticides are rarely studied in bees, even though bees are likely to be exposed to these contaminants in both agricultural and urban environments. In this study, the lethal toxicity of Cr alone and in combination with the neonicotinoid insecticide clothianidin and the ergosterol-biosynthesis-inhibiting fungicide propiconazole was assessed in Apis mellifera adults. The LD50 and lowest benchmark dose of Cr as Cr(NO3)3, revealed a low acute oral toxicity on honey bee foragers (2049 and 379 mg L-1, respectively) and the Cr retention (i.e. bee ability to retain the heavy metal in the body) was generally low compared to other metals. A modified method based on the binomial proportion test was developed to analyse synergistic and antagonistic interactions between the three tested contaminants. The combination of an ecologically-relevant field concentration of chromium with clothianidin and propiconazole did not increase bee mortality. On the contrary, the presence of Cr in mixture with propiconazole elicited a slight antagonistic effect.


Asunto(s)
Cromo/toxicidad , Guanidinas/química , Neonicotinoides/química , Tiazoles/química , Triazoles/química , Animales , Abejas , Cromo/química , Interacciones Farmacológicas , Guanidinas/farmacocinética , Guanidinas/toxicidad , Insecticidas/toxicidad , Neonicotinoides/farmacocinética , Neonicotinoides/toxicidad , Plaguicidas/toxicidad , Tiazoles/farmacocinética , Tiazoles/toxicidad , Triazoles/farmacocinética , Triazoles/toxicidad
7.
Sensors (Basel) ; 17(11)2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29137109

RESUMEN

Electronic nose technology has recently been applied to the detection of several plant diseases and pests, with promising results. However, in spite of its numerous advantages, including operational simplicity, non-destructivity, and bulk sampling, drawbacks include a low sensitivity and specificity in comparison with microbiological and molecular methods. A critical review of the use of an electronic nose for plant disease diagnosis and pest detection is presented, describing the instrumental and procedural advances of sensorial analysis, for the improvement of discrimination between healthy and infected or infested plants. In conclusion, the use of electronic nose technology is suggested to assist, direct, and optimise traditionally adopted diagnostic techniques.


Asunto(s)
Enfermedades de las Plantas , Nariz Electrónica , Plantas
8.
Chemosphere ; 155: 444-452, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27139123

RESUMEN

The adsorption efficiency of a high silica zeolite Y towards sulfamethoxazole, a sulfonamide antibiotic, was evaluated in the presence of two humic monomers, vanillin and caffeic acid, representative of phenolic compounds usually occurring in water bodies, owing their dimension comparable to those of the zeolite microporosity. In the entire range of investigated pH (5-8), adsorption of vanillin, as a single component, was reversible whereas it was irreversible for sulfamethoxazole. In equimolar ternary mixtures, vanillin coadsorbed with sulfamethoxazole, conversely to what observed for caffeic acid, accordingly to their adsorption kinetics and pKa values. Lower and higher adsorptions were observed for sulfamethoxazole and vanillin, respectively, than what it was observed as single components, clearly revealing guest-guest interactions. An adduct formed through H-bonding between the carbonyl oxygen of vanillin and the heterocycle NH of sulfamethoxazole in amide form was observed in the zeolite pore by combined FTIR and Rietveld analysis, in agreement with Density Functional Theory calculations of the adduct stabilization energies. The formation of similar adducts, able to stabilize other naturally occurring phenolic compounds in the microporosities of hydrophobic sorbents, was proposed.


Asunto(s)
Antibacterianos/química , Sustancias Húmicas/efectos adversos , Dióxido de Silicio/química , Sulfametoxazol/química , Sulfonamidas/química , Zeolitas/química , Adsorción , Antibacterianos/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Estudios Interdisciplinarios , Cinética , Sulfametoxazol/aislamiento & purificación , Sulfonamidas/aislamiento & purificación
9.
J Colloid Interface Sci ; 419: 148-59, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24491342

RESUMEN

Sulfonamide antibiotics are persistent pollutants present in surface and subsurface waters in both agricultural and urban environments. Sulfonamides are of particular concern in the environment because they are known to induce high levels of bacterial resistance. Adsorption of sulfamethoxazole sulfonamide antibiotic into three high silica zeolites (Y, mordenite, and ZSM-5) with pore opening sizes comparable to sulfamethoxazole dimensions is reported. Sulfamethoxazole was almost completely removed from water by zeolite Y and MOR in a few minutes. Adsorption onto ZSM-5 showed an increased kinetics with increasing temperature. Antibiotic sorption was largely irreversible with little antibiotic desorbed. Sulfamethoxazole incorporation and localization into the pore of each zeolite system was defined along with medium-weak and cooperative host-guest interactions in which water molecules play a certain role only in zeolite Y and mordenite.


Asunto(s)
Antibacterianos/química , Dióxido de Silicio/química , Sulfametoxazol/química , Zeolitas/química , Adsorción , Silicatos de Aluminio/química
10.
J Agric Food Chem ; 62(2): 337-47, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24313381

RESUMEN

Ralstonia solanacearum (Rs) and Clavibacter michiganensis subsp. sepedonicus (Cms) are the bacterial causal agents of potato brown and ring rot, respectively, and are included in the A2 list of quarantine pathogens in Europe. Identification by GC-MS analysis of volatile organic compounds from Rs or Cms cultured on different nutrient media was performed. GC-MS and PTR-MS analysis were carried out also on unwounded potato tubers infected with the same pathogens. Infected tubers were produced by experimental inoculations of the plants. In in vitro experiments, Rs or Cms emitted volatile compounds, part of which were specific disease markers of potato (2-propanol and 3-methylbutanoic acid), mainly originating from bacterial metabolism (i.e., amino acid degradation, carbohydrate and fatty acid oxidation). In potato tubers, pathogen metabolism modified the volatile compound pattern emitted from healthy samples. Both bacteria seem to accelerate metabolic processes ongoing in potatoes and, in the case of Rs, disease markers (1-hepten-3-ol, 3,6-dimethyl-3-octanone, 3-ethyl-3-methylpentane, 1-chloroctane, and benzothiazole) were identified.


Asunto(s)
Biomarcadores/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Compuestos Orgánicos Volátiles/análisis , 2-Propanol/análisis , Actinobacteria/metabolismo , Hemiterpenos , Ácidos Pentanoicos/análisis , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/microbiología , Ralstonia solanacearum/metabolismo
11.
J Hazard Mater ; 178(1-3): 218-25, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20133061

RESUMEN

Sulfonamide antibiotics are persistent pollutants of aquatic bodies, known to induce high levels of bacterial resistance. We investigated the adsorption of sulfadiazine, sulfamethazine, and sulfachloropyridazine sulfonamides into a highly dealuminated faujasite zeolite (Y) with cage window sizes comparable to sulfonamide dimensions. At maximal solubility the antibiotics were almost completely (>90%) and quickly (t<1min) removed from the water by zeolite. The maximal amount of sulfonamides adsorbed was 18-26% DW of dry zeolite weight, as evidenced by thermogravimetric analyses and accounted for about one antibiotic molecule per zeolitic cage. The presence of this organic inside the cage was revealed by unit cell parameter variations and structural deformations obtained by X-ray structure analyses carried out using the Rietveld method on exhausted zeolite. The most evident deformation effects were the lowering of the Fd-3m real symmetry in the parent zeolite to Fd-3 and the remarkable deformations which occurred in the 12-membered ring cage window after sulfadiazine or sulfachloropyridazine adsorption. After sulfamethazine adsorption, zeolite deformation caused a lowering in symmetry up to the monoclinic P2/m space group. The effective and irreversible adsorption of sulfonamides into organophylic Y zeolite makes this cheap and environmentally friendly material a suitable candidate for removing sulfonamides from water.


Asunto(s)
Antibacterianos/aislamiento & purificación , Sulfonamidas/aislamiento & purificación , Agua/química , Zeolitas/química , Adsorción , Cromatografía Líquida de Alta Presión , Análisis de Fourier , Cinética , Modelos Químicos , Nitrógeno/química , Porosidad , Espectrofotometría Ultravioleta , Termodinámica , Termogravimetría , Difracción de Rayos X
12.
J Agric Food Chem ; 56(13): 5273-7, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18540615

RESUMEN

A study was undertaken to investigate the stability of cyhalofop-butyl (2 R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]butylpropanoate (CyB), an aryloxyphenoxy-propionic herbicide, at different pH values. The hydrolysis of CyB was faster in nonsterile than in sterile water. In sterile medium, CyB degraded only to (2 R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propanoic acid (CyA), whereas in nonsterile water, also the metabolites (2 R)-2-[4-(4-carbamoyl-2-fluorophenoxy)phenoxy]propanoic acid (CyAA) and (2 R)-2-[4-(4-carboxyl-2-fluorophenoxy)phenoxy]propanoic acid (CyD) were detected. The adsorption of CyB onto clays, iron oxide, and dissolved organic matter (DOM), using a batch equilibrium method, was also studied. A lipophilic bond is responsible for CyB adsorption on DOM. CyB was adsorbed on Fe(III)- and Ca-clays through hydrogen bonding between the carbonyl oxygen and water surrounding the exchangeable cations. In the interlayer of K-clay, CyB was hydrolyzed to CyA, which remained adsorbed therein as a monomer. The acid CyA was adsorbed only by the Fe-oxide through complexation. The CyA-Fe-oxide complex was stable and did not undergo degradation.


Asunto(s)
Butanos/química , Restauración y Remediación Ambiental/métodos , Herbicidas/química , Nitrilos/química , Suelo/análisis , Adsorción , Silicatos de Aluminio/química , Cromatografía Líquida de Alta Presión , Arcilla , Coloides/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
13.
J Agric Food Chem ; 56(11): 4102-11, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18476694

RESUMEN

The effect of undesalted dissolved organic matter (DOM) extracted from composts on the degradation, adsorption, and mobility of cyhalofop herbicide in soils was studied. A paddy-field sediment poor in organic matter (OM), an OM-rich forest soil, and DOM from agroindustrial or municipal waste compost were used. DOM increased the cyhalofop-acid but not the cyhalofop-butyl solubility in water. The degradation of cyhalofop-butyl in the sediment was slow, giving cyhalofop-acid as the only metabolite, whereas in forest soil, the process was faster, and three byproducts were detected. Soil pretreatment with DOM did not modify the degradation pattern but only reduced the adsorption of cyhalofop-butyl by soil, whereas it increased the adsorption of cyhalofop-acid. Among the cationic components of DOM solutions, the potassium ion seems to be related to the increased adsorption of the cyhalofop-acid in both OM-poor and OM-rich soils, yielding reversible complexes with the former and favoring hydrophobic interactions with the latter.


Asunto(s)
Butanos/análisis , Butanos/química , Herbicidas/análisis , Herbicidas/química , Nitrilos/análisis , Nitrilos/química , Suelo/análisis , Adsorción , Cationes , Cinética , Potasio/farmacología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...