Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(14): 2980-2982, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576171

RESUMEN

To explore the lower efficacy of adoptive cell transfer (ACT) therapy in patients with anti-PD-1 experienced melanoma, tumor mutational burden (TMB), predicted neoantigen frequencies, and tumor-infiltrating lymphocyte (TIL) neoantigen reactivity were assessed. Reduced neoantigen-specific TIL frequencies correlated with lower ACT response even in patients with similar TMB, suggesting a potentially harmful effect of PD-1 inhibition on T-cell outgrowth. See related article by Levi et al., p. 3042.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Neoplasias Primarias Secundarias/patología
2.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314390

RESUMEN

NK cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4+ T cells during the first 3 days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state. Here, we showed that NK cell suppression of T cells is associated with transient accumulation of NK cells within T cell-rich sites of the spleen during lymphocytic choriomeningitis virus infection. The chemokine receptor CXCR3 was required for this relocation and suppression of antiviral T cells. Accordingly, NK cell migration was mediated by type I IFN-dependent promotion of CXCR3 ligand expression. In contrast, adenoviral vectors that weakly induced type I IFN and did not stimulate NK cell inhibition of T cells also did not promote measurable redistribution of NK cells to T cell zones. Exogenous IFN rescued NK cell migration during adenoviral vector immunization. Thus, type I IFN and CXCR3 were critical for properly positioning NK cells to constrain antiviral T cell responses. Development of strategies to curtail migration of NK cells between lymphoid compartments may enhance vaccine-elicited immune responses.


Asunto(s)
Células Asesinas Naturales/inmunología , Tejido Linfoide/inmunología , Receptores CXCR3/metabolismo , Animales , Movimiento Celular/inmunología , Interacciones Microbiota-Huesped/inmunología , Tolerancia Inmunológica , Inmunidad Innata , Activación de Linfocitos , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
3.
Nat Rev Clin Oncol ; 18(4): 215-229, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33473220

RESUMEN

Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers. Herein, we provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, review the types of vaccine-induced T cells that are found within tumours and outline strategies to enhance the T cell responses. In addition, we discuss the current status of clinical studies testing personalized neoantigen vaccines in patients with cancer and considerations for future clinical investigation of this novel, individualized approach to immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/terapia , Medicina de Precisión/tendencias , Terapia Combinada/métodos , Terapia Combinada/tendencias , Historia del Siglo XXI , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Inmunoterapia/tendencias , Neoplasias/inmunología , Medicina de Precisión/métodos , Linfocitos T/inmunología , Linfocitos T/fisiología , Linfocitos T/trasplante
4.
PLoS Pathog ; 16(12): e1009096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315936

RESUMEN

Bacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice. In C3HeB/FeJ mice, ΔLprG vaccination resulted in innate peripheral cytokine production and induced high polyclonal PPD-specific cytokine-secreting CD4+ T lymphocytes in peripheral blood. The ΔLprG vaccine afforded protective efficacy in the lungs of C3H/FeJ mice following both H37Rv and Erdman aerosolized Mtb challenges. Vaccine efficacy correlated with antigen-specific PD-1-negative CD4+ T lymphocytes as well as with serum IL-17 levels after vaccination. We hypothesize that induction of Th17 cells in lung is critical for vaccine protection, and we show a serum cytokine biomarker for IL-17 shortly after vaccination may predict protective efficacy.


Asunto(s)
Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Factores de Virulencia/genética , Animales , Genes Bacterianos/genética , Interleucina-17/inmunología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control
5.
PLoS Pathog ; 15(12): e1008180, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841560

RESUMEN

Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.


Asunto(s)
Adenoviridae/inmunología , Regulación Viral de la Expresión Génica/fisiología , alfa-Defensinas , Células A549 , Adenoviridae/genética , Animales , Vectores Genéticos , Humanos , Ratones
6.
J Immunol ; 201(9): 2744-2752, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30249811

RESUMEN

The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling-related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Depsipéptidos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inmunogenicidad Vacunal/inmunología , Melanoma Experimental/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores
7.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29514912

RESUMEN

Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a "rheostat" function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection.IMPORTANCE Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.


Asunto(s)
Adenovirus Humanos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Vacunas Virales/inmunología , Adenovirus Humanos/genética , Animales , Femenino , Depleción Linfocítica , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Endogámicos C57BL , Vacunación
8.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29298888

RESUMEN

Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.


Asunto(s)
Adenoviridae , Vacunas contra el Adenovirus , Clonación Molecular , Vectores Genéticos , Inmunogenicidad Vacunal/genética , Células A549 , Adenoviridae/genética , Adenoviridae/inmunología , Vacunas contra el Adenovirus/genética , Vacunas contra el Adenovirus/inmunología , Animales , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Macaca mulatta , Ratones
9.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457610

RESUMEN

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Asunto(s)
Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Animales , Líquido Cefalorraquídeo/virología , Inflamación/inmunología , Tracto Gastrointestinal Inferior/virología , Ganglios Linfáticos/virología , Macaca mulatta , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Sci Immunol ; 1(5)2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28239679

RESUMEN

Adenovirus serotype 5 (Ad5) vaccine vectors elicit robust CD8+ T cell responses, but these responses typically exhibit a partially exhausted phenotype. However, the immunologic mechanism by which Ad5 vectors induce dysfunctional CD8+ T cells has not previously been elucidated. Here we demonstrate that, following immunization of B6 mice, Ad5 vectors elicit antigen-specific IL-10+CD4+ T cells with a distinct transcriptional profile in a dose-dependent fashion. In rhesus monkeys, we similarly observed upregulated expression of IL-10 and PD-1 by CD4+ T cells following Ad5 vaccination. These cells markedly suppressed vaccine-elicited CD8+ T cell responses in vivo and IL-10 blockade increased the frequency and functionality of antigen-specific CD8+ T cells as well as improved protective efficacy against challenge with recombinant Listeria monocytogenes. Moreover, induction of these inhibitory IL-10+CD4+ T cells correlated with IL-27 expression and IL-27 blockade substantially improved CD4+ T cell functionality. These data highlight a role for IL-27 in the induction of inhibitory IL-10+CD4+ T cells, which suppress CD8+ T cell magnitude and function following Ad5 vector immunization. A deeper understanding of the cytokine networks and transcriptional profiles induced by vaccine vectors should lead to strategies to improve the immunogenicity and protective efficacy of viral vector-based vaccines.

11.
Nat Immunol ; 16(9): 927-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26193080

RESUMEN

Natural killer (NK) cells have traditionally been considered nonspecific components of innate immunity, but recent studies have shown features of antigen-specific memory in mouse NK cells. However, it has remained unclear whether this phenomenon also exists in primates. We found that splenic and hepatic NK cells from SHIV(SF162P3)-infected and SIV(mac251)-infected macaques specifically lysed Gag- and Env-pulsed dendritic cells in an NKG2-dependent fashion, in contrast to NK cells from uninfected macaques. Moreover, splenic and hepatic NK cells from Ad26-vaccinated macaques efficiently lysed antigen-matched but not antigen-mismatched targets 5 years after vaccination. These data demonstrate that robust, durable, antigen-specific NK cell memory can be induced in primates after both infection and vaccination, and this finding could be important for the development of vaccines against HIV-1 and other pathogens.


Asunto(s)
Células Dendríticas/inmunología , VIH-1/inmunología , Células Asesinas Naturales/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Memoria Inmunológica , Células Asesinas Naturales/metabolismo , Hígado/citología , Hígado/inmunología , Macaca mulatta , Receptores Similares a Lectina de Células NK/metabolismo , Bazo/citología , Bazo/inmunología
12.
J Immunol ; 195(3): 1054-63, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116499

RESUMEN

In various models of chronic infections and cancers, blockade of the inhibitory programmed cell death-1 (PD-1) pathway has been shown to be promising at restoring immune function. However, there is not a complete understanding of the factors that influence responsiveness to programmed death-ligand 1 (PD-L1) blockade. In particular, it is currently unclear whether the efficacy of PD-L1 blockade is dependent on the stage of disease. In a model of chronic lymphocytic choriomeningitis virus infection in mice, we show that exhausted CD8 T cells during the late stage of infection are refractory to rescue by PD-L1 blockade. Interestingly, PD-L1 blockade during the late stage of infection resulted in a biased expansion of PD-1(+) CTLA-4(+) regulatory T cells (Tregs) over antiviral CD8 T cells. Although previous studies have shown that Treg ablation can enhance the immune rescue by PD-L1 blockade, this regimen may induce lethal autoimmunity. In this report, we show that PD-L1 blockade together with CD4 T cell depletion effectively rescued deeply exhausted CD8 T cells and enhanced antiviral control during the late stage of chronic infection without any associated mortality. These data demonstrate the pleiotropic effects of anti-PD-L1 therapy on both virus-specific CD8 T cells and Tregs, and suggest a novel strategy for effectively rescuing deeply exhausted CD8 T cells.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Depleción Linfocítica , Virus de la Coriomeningitis Linfocítica/inmunología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis/inmunología , Proliferación Celular , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Ratones , Ratones Endogámicos C57BL
13.
Genome Biol Evol ; 4(5): 687-702, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22534163

RESUMEN

The diversity and abundance of non-long terminal repeat (LTR) retrotransposons (nLTR-RT) differ drastically among vertebrate genomes. At one extreme, the genome of placental mammals is littered with hundreds of thousands of copies resulting from the activity of a single clade of nLTR-RT, the L1 clade. In contrast, fish genomes contain a much more diverse repertoire of nLTR-RT, represented by numerous active clades and families. Yet, the number of nLTR-RT copies in teleostean fish is two orders of magnitude smaller than in mammals. The vast majority of insertions appear to be very recent, suggesting that nLTR-RT do not accumulate in fish genomes. This pattern had previously been explained by a high rate of turnover, in which the insertion of new elements is offset by the selective loss of deleterious inserts. The turnover model was proposed because of the similarity between fish and Drosophila genomes with regard to their nLTR-RT profile. However, it is unclear if this model applies to fish. In fact, a previous study performed on the puffer fish suggested that transposable element insertions behave as neutral alleles. Here we examined the dynamics of amplification of nLTR-RT in the three-spine stickleback (Gasterosteus aculeatus). In this species, the vast majority of nLTR-RT insertions are relatively young, as suggested by their low level of divergence. Contrary to expectations, a majority of these insertions are fixed in lake and oceanic populations; thus, nLTR-RT do indeed accumulate in the genome of their fish host. This is not to say that nLTR-RTs are fully neutral, as the lack of fixed long elements in this genome suggests a deleterious effect related to their length. This analysis does not support the turnover model and strongly suggests that a much higher rate of DNA loss in fish than in mammals is responsible for the relatively small number of nLTR-RT copies and for the scarcity of ancient elements in fish genomes. We further demonstrate that nLTR-RT decay in fish occurs mostly through large deletions and not by the accumulation of small deletions.


Asunto(s)
Evolución Molecular , Retroelementos/genética , Eliminación de Secuencia/genética , Smegmamorpha/genética , Secuencias Repetidas Terminales , Animales , Peces/genética , Genoma , Mamíferos/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...