Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670879

RESUMEN

Four flavanone Schiff bases (E)-1-(2-phenylchroman-4-ylidene)thiosemicarbazide (FTSC) (1), N',2-bis((E)-2-phenylchroman-4-ylidene)hydrazine-1-carbothiohydrazide (FTCH) (2), (E)-N'-(2-phenylchroman-4-ylidene)benzohydrazide (FHSB) (3) and (E)-N'-(2-phenylchroman-4-ylidene)isonicotinohydrazide (FIN) (4) were synthesized and evaluated for their electronic and physicochemical properties using experimental and theoretical methods. One of them, (2), consists of two flavanone moieties and one substituent, the rest of the compounds (1, 3, 4) comprises of a flavanone-substituent system in relation to 1:1. To uncover the structural and electronic properties of flavanone Schiff bases, computational simulations and absorption spectroscopy were applied. Additionally, binding efficiencies of the studied compounds to serum albumins were evaluated using fluorescence spectroscopy. Spectral profiles of flavanone Schiff bases showed differences related to the presence of substituent groups in system B of the Schiff base molecules. Based on the theoretically predicted chemical descriptors, FTSC is the most chemically reactive among the studied compounds. Binding regions within human and bovine serum albumins of the ligands studied are in the vicinity of the Trp residue and a static mechanism dominates in fluorescence quenching.


Asunto(s)
Flavanonas/química , Bases de Schiff/química , Albúmina Sérica/química , Secuencia de Aminoácidos , Animales , Bovinos , Teoría Funcional de la Densidad , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Espectrometría de Fluorescencia , Espectrofotometría , Relación Estructura-Actividad
2.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443449

RESUMEN

Structure-related biological activities of flavanones are still considered largely unexplored. Since they exhibit various medicinal activities, it is intriguing to enter deeper into their chemical structures, electronic transitions or interactions with some biomolecules in order to find properties that allow us to better understand their effects. Little information is available on biological activity of flavanone and its monohydroxy derivatives in relation to their physicochemical properties as spectral profiles, existence of protonated/deprotonated species under pH changes or interaction with Calf Thymus DNA. We devoted this work to research demonstrating differences in the physicochemical properties of the four flavanones: flavanone, 2'-hydroxyflavanone, 6-hydroxyflavanone and 7-hydroxyflavanone and linking them to their biological activity. Potentiometric titration, UV-Vis spectroscopy were used to investigate influence of pH on acid-base and spectral profiles and to propose the mode of interaction with DNA. Cyclic voltammetry was applied to evaluate antioxidant potentiality and additionally, theoretical DFT(B3LYP) method to disclose electronic structure and properties of the compounds. Molecular geometries, proton affinities and pKa values have been determined. According to computational and cyclic voltammetry results we could predict higher antioxidant activity of 6-hydroxyflavanone with respect to other compounds. The values of Kb intrinsic binding constants of the flavanones indicated weak interactions with DNA. Structure-activity relationships observed for antioxidant activity and DNA interactions suggest that 6-hydroxyflavanone can protect DNA against oxidative damage most effectively than flavanone, 2'-hydroxyflavanone or 7-hydroxyflavanone.


Asunto(s)
ADN/química , Flavanonas/química , Algoritmos , Animales , Bovinos , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA