Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(12): 2213-2229, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37395010

RESUMEN

AIMS: Mitochondrial Complex I assembly (MCIA) is a multi-step process that necessitates the involvement of a variety of assembly factors and chaperones to ensure that the final active enzyme is correctly assembled. The role of the assembly factor evolutionarily conserved signalling intermediate in the toll (ECSIT) pathway was studied across various murine tissues to determine its role in this process and how this varied between tissues of varying energetic demands. We hypothesized that many of the known functions of ECSIT were unhindered by the introduction of an ENU-induced mutation, while its role in Complex I assembly was affected on a tissue-specific basis. METHODS AND RESULTS: Here, we describe a mutation in the MCIA factor ECSIT that reveals tissue-specific requirements for ECSIT in Complex I assembly. MCIA is a multi-step process dependent on assembly factors that organize and arrange the individual subunits, allowing for their incorporation into the complete enzyme complex. We have identified an ENU-induced mutation in ECSIT (N209I) that exhibits a profound effect on Complex I component expression and assembly in heart tissue, resulting in hypertrophic cardiomyopathy in the absence of other phenotypes. The dysfunction of Complex I appears to be cardiac specific, leading to a loss of mitochondrial output as measured by Seahorse extracellular flux and various biochemical assays in heart tissue, while mitochondria from other tissues were unaffected. CONCLUSIONS: These data suggest that the mechanisms underlying Complex I assembly and activity may have tissue-specific elements tailored to the specific demands of cells and tissues. Our data suggest that tissues with high-energy demands, such as the heart, may utilize assembly factors in different ways to low-energy tissues in order to improve mitochondrial output. These data have implications for the diagnosis and treatment of various disorders of mitochondrial function as well as cardiac hypertrophy with no identifiable underlying genetic cause.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Mutación
2.
J Mol Cell Cardiol ; 180: 44-57, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127261

RESUMEN

We compared commonly used BAPTA-derived chemical Ca2+ dyes (fura2, Fluo-4, and Rhod-2) with a newer genetically encoded indicator (R-GECO) in single cell models of the heart. We assessed their performance and effects on cardiomyocyte contractility, determining fluorescent signal-to-noise ratios and sarcomere shortening in primary ventricular myocytes from adult mouse and guinea pig, and in human iPSC-derived cardiomyocytes. Chemical Ca2+ dyes displayed dose-dependent contractile impairment in all cell types, and we observed a negative correlation between contraction and fluorescence signal-to-noise ratio, particularly for fura2 and Fluo-4. R-GECO had no effect on sarcomere shortening. BAPTA-based dyes, but not R-GECO, inhibited in vitro acto-myosin ATPase activity. The presence of fura2 accentuated or diminished changes in contractility and Ca2+ handling caused by small molecule modulators of contractility and intracellular ionic homeostasis (mavacamten, levosimendan, and flecainide), but this was not observed when using R-GECO in adult guinea pig left ventricular cardiomyocytes. Ca2+ handling studies are necessary for cardiotoxicity assessments of small molecules intended for clinical use. Caution should be exercised when interpreting small molecule studies assessing contractile effects and Ca2+ transients derived from BAPTA-like chemical Ca2+ dyes in cellular assays, a common platform for cardiac toxicology testing and mechanistic investigation of cardiac disease physiology and treatment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Cobayas , Humanos , Ratones , Calcio/metabolismo , Colorantes/metabolismo , Colorantes/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Porcinos
3.
Cardiovasc Res ; 118(7): 1742-1757, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34142125

RESUMEN

AIMS: Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. METHODS AND RESULTS: We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6-9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4-5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs-leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. CONCLUSIONS: Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure.


Asunto(s)
Calcio , Insuficiencia Cardíaca , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Sirolimus
4.
Kidney Int ; 101(3): 527-540, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774562

RESUMEN

Nephrotic syndrome is characterized by severe proteinuria, hypoalbuminaemia, edema and hyperlipidaemia. Genetic studies of nephrotic syndrome have led to the identification of proteins playing a crucial role in slit diaphragm signaling, regulation of actin cytoskeleton dynamics and cell-matrix interactions. The laminin α5 chain is essential for embryonic development and, in association with laminin ß2 and laminin γ1, is a major component of the glomerular basement membrane, a critical component of the glomerular filtration barrier. Mutations in LAMA5 were recently identified in children with nephrotic syndrome. Here, we have identified a novel missense mutation (E884G) in the uncharacterized L4a domain of LAMA5 where homozygous mice develop nephrotic syndrome with severe proteinuria with histological and ultrastructural changes in the glomerulus mimicking the progression seen in most patients. The levels of LAMA5 are reduced in vivo and the assembly of the laminin 521 heterotrimer significantly reduced in vitro. Proteomic analysis of the glomerular extracellular fraction revealed changes in the matrix composition. Importantly, the genetic background of the mice had a significant effect on aspects of disease progression from proteinuria to changes in podocyte morphology. Thus, our novel model will provide insights into pathologic mechanisms of nephrotic syndrome and pathways that influence the response to a dysfunctional glomerular basement membrane that may be important in a range of kidney diseases.


Asunto(s)
Síndrome Nefrótico , Animales , Antecedentes Genéticos , Membrana Basal Glomerular/patología , Humanos , Ratones , Mutación , Síndrome Nefrótico/patología , Mutación Puntual , Proteinuria/genética , Proteinuria/metabolismo , Proteómica
5.
Sci Rep ; 9(1): 20398, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31892712

RESUMEN

The link between mutations in collagen genes and the development of Alport Syndrome has been clearly established and a number of animal models, including knock-out mouse lines, have been developed that mirror disease observed in patients. However, it is clear from both patients and animal models that the progression of disease can vary greatly and can be modified genetically. We have identified a point mutation in Col4a4 in mice where disease is modified by strain background, providing further evidence of the genetic modification of disease symptoms. Our results indicate that C57BL/6J is a protective background and postpones end stage renal failure from 7 weeks, as seen on a C3H background, to several months. We have identified early differences in disease progression, including expression of podocyte-specific genes and podocyte morphology. In C57BL/6J mice podocyte effacement is delayed, prolonging normal renal function. The slower disease progression has allowed us to begin dissecting the pathogenesis of murine Alport Syndrome in detail. We find that there is evidence of differential gene expression during disease on the two genetic backgrounds, and that disease diverges by 4 weeks of age. We also show that an inflammatory response with increasing MCP-1 and KIM-1 levels precedes loss of renal function.


Asunto(s)
Colágeno Tipo IV/genética , Antecedentes Genéticos , Mutación , Nefritis Hereditaria/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Riñón/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Nefritis Hereditaria/metabolismo , Podocitos/metabolismo
6.
Curr Protoc Mouse Biol ; 8(4): e50, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30240153

RESUMEN

With the increasing availability and complexity of mouse models of disease, either spontaneous or induced, there is a concomitant increase in their use in the analysis of pathogenesis. Among such diseases is osteoarthritis, a debilitating disease with few treatment options. While advances in our understanding of the pathogenesis of osteoarthritis has advanced through clinical investigations and genome-wide association studies, there is still a large gap in our knowledge, hindering advances in therapy. Patient samples are available ex vivo, but these are generally in the very late stages of disease. However, with mice, we are able to induce disease at a defined time and track the progression in vivo and ex vivo, from inception to end stage, to delineate the processes involved in disease development. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Modelos Animales de Enfermedad , Meniscos Tibiales/cirugía , Ratones/cirugía , Osteoartritis/etiología , Animales
7.
Curr Protoc Mouse Biol ; 8(2): e42, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29927552

RESUMEN

Aging is inevitable, and our society must deal with the consequences: namely, an increased incidence of disease and ill health. Many mouse models of disease are acute or early onset or are induced in young mice, despite the fact that aging is a significant risk factor for a range of significant diseases. To improve modeling of such diseases, we should incorporate aging into our models. Many systems are affected by aging, with a decline in mitochondrial function, an increase in senescence, a loss of resilience, telomere shortening, and a decline in immune function being key factors in the increased susceptibility to disease that is associated with aging. To develop novel models of age-related disease, we undertook a phenotype-driven screen of a pipeline of mutagenized mice. Here, we describe some of the underlying protocols and outline important aspects to consider when studying aged mice. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Mutación , Fenotipo , Animales , Ratones
8.
Nat Commun ; 7: 12444, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27534441

RESUMEN

Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.


Asunto(s)
Envejecimiento/genética , Pruebas Genéticas , Mutagénesis/genética , Animales , Cóclea/metabolismo , Modelos Animales de Enfermedad , Epitelio/ultraestructura , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Audición/genética , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...