Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(46): e2214334120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931104

RESUMEN

Civil infrastructure will be essential to face the interlinked existential threats of climate change and rising resource demands while ensuring a livable Anthropocene for all. However, conventional infrastructure planning largely neglects the contributions and maintenance of Earth's ecological life support systems, which provide irreplaceable services supporting human well-being. The stability and performance of these services depend on biodiversity, but conventional infrastructure practices, narrowly focused on controlling natural capital, have inadvertently degraded biodiversity while perpetuating social inequities. Here, we envision a new infrastructure paradigm wherein biodiversity and ecosystem services are a central objective of civil engineering. In particular, we reimagine infrastructure practice such that 1) ecosystem integrity and species conservation are explicit objectives from the outset of project planning; 2) infrastructure practices integrate biodiversity into diverse project portfolios along a spectrum from conventional to nature-based solutions and natural habitats; 3) ecosystem functions reinforce and enhance the performance and lifespan of infrastructure assets; and 4) civil engineering promotes environmental justice by counteracting legacies of social inequity in infrastructure development and nature conservation. This vision calls for a fundamental rethinking of the standards, practices, and mission of infrastructure development agencies and a broadening of scope for conservation science. We critically examine the legal and professional precedents for this paradigm shift, as well as the moral and economic imperatives for manifesting equitable infrastructure planning that mainstreams biodiversity and nature's benefits to people. Finally, we set an applied research agenda for supporting this vision and highlight financial, professional, and policy pathways for achieving it.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Cambio Climático , Conservación de los Recursos Naturales
2.
PLoS One ; 16(8): e0256606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34432827

RESUMEN

Threats to public health and environmental quality from septic systems are more prevalent in areas with poorly draining soils, high water tables, or frequent flooding. Significant research gaps exist in assessing these systems' vulnerability and evaluating factors associated with higher rates of septic systems replacement and repair. We developed a novel GIS-based framework for assessing septic system vulnerability using a database of known septic system specifications and a modified Soil Topographic Index (STI) that incorporates seasonal high groundwater elevation to assess risks posed to septic systems in coastal Georgia. We tested the hypothesis that both the modified STI and septic system specifications such as tank capacity per bedroom and drainfield type would explain most of the variance in septic system repair and replacement using classification inference tree and generalized logistic regression models. Our modeling results indicate that drainfield type (level vs. mounded) is the most significant variable (p-value < 0.001) in predicting septic systems functionality followed by septic tank capacity per bedroom (p-value < 0.01). These show the importance of septic system design regulations such as a minimum requirement for horizontal separation distance between the bottom of trenches and seasonal water table, and adequate tank capacity design. However, for septic systems with a mounded drainfield and a larger tank capacity per bedroom, the modified STI representing hydrological characteristics of septic system location is a significant predictor of a high septic system repair and replacement rate. The methodology developed in this study can have important implications for managing existing septic systems and planning for future development in coastal areas, especially in an environment of rapid climatic change.


Asunto(s)
Modelos Teóricos , Eliminación de Residuos Líquidos , Administración de Residuos , Área Bajo la Curva , Geografía , Georgia , Modelos Logísticos , Curva ROC , Reproducibilidad de los Resultados , Suelo
3.
J Environ Qual ; 49(3): 569-581, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33016400

RESUMEN

Urbanization alters the delivery of water and sediment to receiving streams, often leading to channel erosion and enlargement, which increases loading of sediment and nutrients, degrades habitat, and harms sensitive biota. Stormwater control measures (SCMs) are constructed in an attempt to mitigate some of these effects. In addition, stream restoration practices such as bank stabilization are increasingly promoted as a means of improving water quality by reducing downstream sediment and pollutant loading. Each unique combination of SCMs and stream restoration practices results in a novel hydrologic regime and set of geomorphic characteristics that interact to determine stream condition, but in practice, implementation is rarely coordinated due to funding and other constraints. In this study, we examine links between watershed-scale implementation of SCMs and stream restoration in Big Dry Creek, a suburban watershed in the Front Range of northern Colorado. We combine continuous hydrologic model simulations of watershed-scale response to SCM design scenarios with channel evolution modeling to examine interactions between stormwater management and stream restoration strategies for reducing loading of sediment and adsorbed phosphorus from channel erosion. Modeling results indicate that integrated design of SCMs and stream restoration interventions can result in synergistic reductions in pollutant loading. Not only do piecemeal and disunited approaches to stormwater management and stream restoration miss these synergistic benefits, they make restoration projects more prone to failure, wasting valuable resources for pollutant reduction. We conclude with a set of recommendations for integrated planning of SCMs and stream restoration to simultaneously achieve water quality and channel protection goals.


Asunto(s)
Conservación de los Recursos Naturales , Calidad del Agua , Colorado , Ecosistema , Lluvia
4.
Ecol Appl ; 30(1): e02005, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532056

RESUMEN

More than a century of dam construction and water development in the western United States has led to extensive ecological alteration of rivers. Growing interest in improving river function is compelling practitioners to consider ecological restoration when managing dams and water extraction. We developed an Ecological Response Model (ERM) for the Cache la Poudre River, northern Colorado, USA, to illuminate effects of current and possible future water management and climate change. We used empirical data and modeled interactions among multiple ecosystem components to capture system-wide insights not possible with the unintegrated models commonly used in environmental assessments. The ERM results showed additional flow regime modification would further alter the structure and function of Poudre River aquatic and riparian ecosystems due to multiple and interacting stressors. Model predictions illustrated that specific peak flow magnitudes in spring and early summer are critical for substrate mobilization, dynamic channel morphology, and overbank flows, with strong subsequent effects on instream and riparian biota that varied seasonally and spatially, allowing exploration of nuanced management scenarios. Instream biological indicators benefitted from higher and more stable base flows and high peak flows, but stable base flows with low peak flows were only half as effective to increase indicators. Improving base flows while reducing peak flows, as currently proposed for the Cache la Poudre River, would further reduce ecosystem function. Modeling showed that even presently depleted annual flow volumes can achieve substantially different ecological outcomes in designed flow scenarios, while still supporting social demands. Model predictions demonstrated that implementing designed flows in a natural pattern, with attention to base and peak flows, may be needed to preserve or improve ecosystem function of the Poudre River. Improved regulatory policies would include preservation of ecosystem-level, flow-related processes and adaptive management when water development projects are considered.


Asunto(s)
Ecosistema , Ríos , Cambio Climático , Colorado , Movimientos del Agua
5.
Sci Rep ; 9(1): 16288, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705135

RESUMEN

Rising sea levels and growing coastal populations are intensifying interactions at the land-sea interface. To stabilize upland and protect human developments from coastal hazards, landowners commonly emplace hard armoring structures, such as bulkheads and revetments, along estuarine shorelines. The ecological and economic consequences of shoreline armoring have garnered significant attention; however, few studies have examined the extent of hard armoring or identified drivers of hard armoring patterns at the individual landowner level across large geographical areas. This study addresses this knowledge gap by using a fine-scale census of hard armoring along the entire Georgia U.S. estuarine coastline. We develop a parsimonious statistical model that accurately predicts the probability of armoring emplacement at the parcel level based on a set of environmental and socioeconomic variables. Several interacting influences contribute to patterns of shoreline armoring; in particular, shoreline slope and the presence of armoring on a neighboring parcel are strong predictors of armoring. The model also suggests that continued sea level rise and coastal population growth could trigger future increases in armoring, emphasizing the importance of considering dynamic patterns of armoring when evaluating the potential effects of sea level rise. For example, evolving distributions of armoring should be considered in predictions of future salt marsh migration. The modeling approach developed in this study is adaptable to assessing patterns of hard armoring in other regions. With improved understanding of hard armoring distributions, sea level rise response plans can be fully informed to design more efficient scenarios for both urban development and coastal ecosystems.

6.
J Environ Manage ; 234: 104-114, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30616182

RESUMEN

Phosphorus and fine sediment pollution are primary causes of water quality degradation. Streambank erosion is a potentially significant source of fine sediment and particulate phosphorus to watersheds, but it remains difficult to quantify the magnitude of this loading. A new, easily applied, watershed scale model was used to simulate the potential for future phosphorus and sediment loading from channel erosion in two watersheds: Big Dry Creek, Colorado and Lick Creek, North Carolina. The projected magnitude of loading for phosphorus is about an order of magnitude higher in Big Dry Creek compared to Lick Creek (∼280 kg/yr and ∼50 kg/yr, respectively), while sediment loading results are similar (∼950 ton/yr). In both watersheds, model results suggest that channel erosion will not contribute a significant amount of phosphorus to the watershed (∼1-4% of historic watershed total from all pollutant sources) but will contribute a large amount of sediment (30-100% of historic watershed total). Uncertainty in these estimates is high, but quantifying confidence in model projections is important for understanding and using model results. Importantly, modeling shows no decrease in loading over the 40-year model time frame in either watershed, suggesting that the channels are not adjusting to a new stable state and erosion will continue to be a pollutant source. Lick Creek model results are sensitive to upstream sediment supply while Big Dry Creek's are not, reinforcing the importance of considering alterations to both the hydrologic and sediment regimes when analyzing potential channel changes - at least in vertically active channels. This new modeling approach is useful for estimating historic and future phosphorus and sediment loading from channel erosion, an important first step in effective management to improve water quality.


Asunto(s)
Contaminantes Ambientales , Ríos , Colorado , Monitoreo del Ambiente , Sedimentos Geológicos , North Carolina
7.
Water (Basel) ; 10(8): 991, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31396407

RESUMEN

Low Impact Development (LID) is an alternative to conventional urban stormwater management practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is known about the overall watershed scale influence of LID practices. This is particularly true in watersheds with a land cover that is more diverse than that of urban or suburban classifications alone. We address this watershed-scale gap by assessing the effects of three common LID practices (rain gardens, permeable pavement, and riparian buffers) on the hydrology of a 0.94 km2 mixed land cover watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for Land Management Assessments (VELMA), to compare changes in watershed hydrologic responses before and after the implementation of LID practices. For the LID scenarios, we examined different spatial configurations, using 25%, 50%, 75% and 100% implementation extents, to convert sidewalks into rain gardens, and parking lots and driveways into permeable pavement. We further applied 20 m and 40 m riparian buffers along streams that were adjacent to agricultural land cover. The results showed overall increases in shallow subsurface runoff and infiltration, as well as evapotranspiration, and decreases in peak flows and surface runoff across all types and configurations of LID. Among individual LID practices, rain gardens had the greatest influence on each component of the overall watershed water balance. As anticipated, the combination of LID practices at the highest implementation level resulted in the most substantial changes to the overall watershed hydrology. It is notable that all hydrological changes from the LID implementation, ranging from 0.01 to 0.06 km2 across the study watershed, were modest, which suggests a potentially limited efficacy of LID practices in mixed land cover watersheds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...