Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645015

RESUMEN

The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.

2.
Nature ; 622(7981): 173-179, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731000

RESUMEN

Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.


Asunto(s)
Acetilación , Cromatina , Lisina , Metilación , Procesamiento Proteico-Postraduccional , Sitio de Iniciación de la Transcripción , Animales , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Péptidos/química , Péptidos/metabolismo , Histona Desacetilasas/metabolismo
3.
EMBO J ; 42(18): e114654, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37551430

RESUMEN

Eukaryotic cells use chromatin marks to regulate the initiation of DNA replication. The origin recognition complex (ORC)-associated protein ORCA plays a critical role in heterochromatin replication in mammalian cells by recruiting the initiator ORC, but the underlying mechanisms remain unclear. Here, we report crystal and cryo-electron microscopy structures of ORCA in complex with ORC's Orc2 subunit and nucleosomes, establishing that ORCA orchestrates ternary complex assembly by simultaneously recognizing a highly conserved peptide sequence in Orc2, nucleosomal DNA, and repressive histone trimethylation marks through an aromatic cage. Unexpectedly, binding of ORCA to nucleosomes prevents chromatin array compaction in a manner that relies on H4K20 trimethylation, a histone modification critical for heterochromatin replication. We further show that ORCA is necessary and sufficient to specifically recruit ORC into chromatin condensates marked by H4K20 trimethylation, providing a paradigm for studying replication initiation in specific chromatin contexts. Collectively, our findings support a model in which ORCA not only serves as a platform for ORC recruitment to nucleosomes bearing specific histone marks but also helps establish a local chromatin environment conducive to subsequent MCM2-7 loading.


Asunto(s)
Cromatina , Heterocromatina , Animales , Cromatina/genética , Heterocromatina/genética , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Nucleosomas/genética , Microscopía por Crioelectrón , Replicación del ADN , Factores de Transcripción/genética , Origen de Réplica , Mamíferos/genética
4.
Nat Commun ; 13(1): 1059, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217664

RESUMEN

The coordinated action of multiple replicative helicase loading factors is needed for the licensing of replication origins prior to DNA replication. Binding of the Origin Recognition Complex (ORC) to DNA initiates the ATP-dependent recruitment of Cdc6, Cdt1 and Mcm2-7 loading, but the structural details for timely ATPase site regulation and for how loading can be impeded by inhibitory signals, such as cyclin-dependent kinase phosphorylation, are unknown. Using cryo-electron microscopy, we have determined several structures of S. cerevisiae ORC·DNA·Cdc6 intermediates at 2.5-2.7 Å resolution. These structures reveal distinct ring conformations of the initiator·co-loader assembly and inactive ATPase site configurations for ORC and Cdc6. The Orc6 N-terminal domain laterally engages the ORC·Cdc6 ring in a manner that is incompatible with productive Mcm2-7 docking, while deletion of this Orc6 region alleviates the CDK-mediated inhibition of Mcm7 recruitment. Our findings support a model in which Orc6 promotes the assembly of an autoinhibited ORC·DNA·Cdc6 intermediate to block origin licensing in response to CDK phosphorylation and to avert DNA re-replication.


Asunto(s)
Proteínas de Ciclo Celular , Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Origen de Réplica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 11(1): 4263, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848132

RESUMEN

Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2-7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC's ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2-7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2-7 loading site selection in metazoans.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica , Dominio AAA , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrólisis , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Complejo de Reconocimiento del Origen/genética , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Curr Opin Struct Biol ; 59: 195-204, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31630057

RESUMEN

The duplication of chromosomal DNA is a key cell cycle event that involves the controlled, bidirectional assembly of the replicative machinery. In a tightly regulated, multi-step reaction, replicative helicases and other components of the DNA synthesis apparatus are recruited to replication start sites. Although the molecular approaches for assembling this machinery vary between the different domains of life, a common theme revolves around the use of ATP-dependent initiation factors to recognize and remodel origins and to load replicative helicases in a bidirectional manner onto DNA. This review summarizes recent advances in understanding the mechanisms of replication initiation in eukaryotes, focusing on how the replicative helicase is loaded in this system.


Asunto(s)
Replicación del ADN , Relación Estructura-Actividad Cuantitativa , Origen de Réplica , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , ADN/química , ADN/genética , ADN/ultraestructura , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Hidrólisis , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Unión Proteica
7.
PLoS Genet ; 15(9): e1008320, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513569

RESUMEN

In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.


Asunto(s)
Replicación del ADN/genética , Replicación del ADN/fisiología , Origen de Réplica/genética , Evolución Biológica , División Celular/genética , Cromosomas/genética , Evolución Molecular , Replicón/genética
8.
Proc Natl Acad Sci U S A ; 115(26): E5906-E5915, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29899147

RESUMEN

In eukaryotes, the heterohexameric origin recognition complex (ORC) coordinates replication onset by facilitating the recruitment and loading of the minichromosome maintenance 2-7 (Mcm2-7) replicative helicase onto DNA to license origins. Drosophila ORC can adopt an autoinhibited configuration that is predicted to prevent Mcm2-7 loading; how the complex is activated and whether other ORC homologs can assume this state are not known. Using chemical cross-linking and mass spectrometry, biochemical assays, and electron microscopy (EM), we show that the autoinhibited state of Drosophila ORC is populated in solution, and that human ORC can also adopt this form. ATP binding to ORC supports a transition from the autoinhibited state to an active configuration, enabling the nucleotide-dependent association of ORC with both DNA and Cdc6. An unstructured N-terminal region adjacent to the conserved ATPase domain of Orc1 is shown to be required for high-affinity ORC-DNA interactions, but not for activation. ORC optimally binds DNA duplexes longer than the predicted footprint of the ORC ATPases associated with a variety of cellular activities (AAA+) and winged-helix (WH) folds; cryo-EM analysis of Drosophila ORC bound to DNA and Cdc6 indicates that ORC contacts DNA outside of its central core region, bending the DNA away from its central DNA-binding channel. Our findings indicate that ORC autoinhibition may be common to metazoans and that ORC-Cdc6 remodels origin DNA before Mcm2-7 recruitment and loading.


Asunto(s)
ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Complejo de Reconocimiento del Origen/química , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Complejo de Reconocimiento del Origen/metabolismo
9.
Science ; 355(6327)2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28209641

RESUMEN

Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.


Asunto(s)
Células/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Células/enzimología , ADN Helicasas/química , Eucariontes/enzimología , Eucariontes/genética , Eucariontes/metabolismo , Secuencias Hélice-Giro-Hélice , Filogenia , Dominios Proteicos
10.
Mol Cell ; 65(3): 447-459.e6, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111016

RESUMEN

Chromatin remodelers use a helicase-like ATPase motor to reposition and reorganize nucleosomes along genomic DNA. Yet, how the ATPase motor communicates with other remodeler domains in the context of the nucleosome has so far been elusive. Here, we report for the Chd1 remodeler a unique organization of domains on the nucleosome that reveals direct domain-domain communication. Site-specific cross-linking shows that the chromodomains and ATPase motor bind to adjacent SHL1 and SHL2 sites, respectively, on nucleosomal DNA and pack against the DNA-binding domain on DNA exiting the nucleosome. This domain arrangement spans the two DNA gyres of the nucleosome and bridges both ends of a wrapped, ∼90-bp nucleosomal loop of DNA, suggesting a means for nucleosome assembly. This architecture illustrates how Chd1 senses DNA outside the nucleosome core and provides a basis for nucleosome spacing and directional sliding away from transcription factor barriers.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN/química , Nucleosomas/genética , Unión Proteica , Dominios Proteicos , Xenopus laevis
11.
Nature ; 519(7543): 321-6, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25762138

RESUMEN

Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 Å resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 Å wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90° for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.


Asunto(s)
Drosophila melanogaster/química , Células Eucariotas/química , Complejo de Reconocimiento del Origen/química , Animales , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Biológicos , Modelos Moleculares , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Rotación
12.
Proc Natl Acad Sci U S A ; 111(5): 1772-7, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449920

RESUMEN

Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the homotypic interactions in the membrane proximal Ig-like domain of the extracellular region differ from those observed in the crystal structure of the unconstrained extracellular regions. We observe two prevalent conformations in which the tyrosine kinase domains interact asymmetrically. The asymmetric arrangement of the cytoplasmic regions may represent snapshots of molecular interactions occurring during trans autophosphorylation. Moreover, the asymmetric arrangements may facilitate specific intermolecular interactions necessary for trans phosphorylation of different KIT autophosphorylation sites that are required for stimulation of kinase activity and recruitment of signaling proteins by activated KIT.


Asunto(s)
Multimerización de Proteína , Proteínas Proto-Oncogénicas c-kit/química , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/química , Factor de Células Madre/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-kit/ultraestructura
13.
Elife ; 2: e00882, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24137536

RESUMEN

In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.


Asunto(s)
Microtia Congénita/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Mutación , Complejo de Reconocimiento del Origen/genética , Rótula/anomalías , Animales , Drosophila , Humanos , Microscopía Electrónica , Complejo de Reconocimiento del Origen/ultraestructura
14.
Proc Natl Acad Sci U S A ; 109(30): 11999-2004, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778422

RESUMEN

The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Encephalitozoon cuniculi/enzimología , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Adenosina Trifosfato/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Activación Enzimática , Microscopía Electrónica , Complejos Multiproteicos/química , Dispersión del Ángulo Pequeño
15.
Nucleic Acids Res ; 38(22): 8295-305, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20693534

RESUMEN

In all three kingdoms of life, nucleotides in ribosomal RNA (rRNA) are post-transcriptionally modified. One type of chemical modification is 2'-O-ribose methylation, which is, in eukaryotes and archaea, performed by box C/D small ribonucleoproteins (box C/D sRNPs in archaea) and box C/D small nucleolar ribonucleoproteins (box C/D snoRNPs in eukaryotes), respectively. Recently, the first structure of any catalytically active box C/D s(no)RNP determined by electron microscopy and single particle analysis surprisingly demonstrated that they are dimeric RNPs. Mutational analyses of the Nop5 protein interface suggested that di-sRNP formation is also required for the in vitro catalytic activity. We have now analyzed the functional relevance of the second interface, the sRNA interface, within the box C/D di-sRNP. Mutations in conserved sequence elements of the sRNA, which allow sRNP assembly but which severely interfere with the catalytic activity of box C/D sRNPs, prevent formation of the di-sRNP. In addition, we can observe the dimeric box C/D sRNP architecture with a different box C/D sRNP, suggesting that this architecture is conserved. Together, these results provide further support for the functional relevance of the di-sRNP architecture and also provide a structural explanation for the observed defects in catalysis of 2'-O-ribose methylation.


Asunto(s)
Proteínas Arqueales/química , ARN de Archaea/química , ARN Pequeño no Traducido/química , Ribonucleoproteínas/química , Proteínas Arqueales/metabolismo , Secuencia de Bases , Secuencia Conservada , Dimerización , Methanococcales/genética , Mutación , ARN de Archaea/metabolismo , ARN Pequeño no Traducido/metabolismo , Ribonucleoproteínas/metabolismo
16.
Crit Rev Biochem Mol Biol ; 45(5): 331-50, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20572804

RESUMEN

Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.


Asunto(s)
Ribonucleoproteínas/metabolismo , Animales , Humanos , Modelos Biológicos , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Ribonucleoproteínas/química , Telomerasa/metabolismo
17.
Mol Biosyst ; 6(3): 481-93, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20174677

RESUMEN

Ribosomes are vital for cell growth and survival. Until recently, it was believed that mutations in ribosomes or ribosome biogenesis factors would be lethal, due to the essential nature of these complexes. However, in the last few decades, a number of diseases of ribosome biogenesis have been discovered. It remains a challenge in the field to elucidate the molecular mechanisms underlying them.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Mutación , Neoplasias/genética , Ribosomas/genética , Ribosomas/fisiología , Enfermedad/genética , Humanos , Precursores del ARN/genética , Proteínas Ribosómicas/genética
18.
Science ; 325(5946): 1384-7, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19745151

RESUMEN

Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.


Asunto(s)
Proteínas Arqueales/química , Proteínas Cromosómicas no Histona/química , Methanococcales/química , ARN de Archaea/química , Ribonucleoproteínas/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , Secuencia de Bases , Microscopía Electrónica , Modelos Moleculares , Peso Molecular , Conformación de Ácido Nucleico , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN de Archaea/ultraestructura , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura
19.
J Neurooncol ; 86(3): 257-64, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17805487

RESUMEN

The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) controls the glycolytic flux via the allosteric activator fructose 2,6-bisphosphate. Because of its proto-oncogenic character, the PFK-2/FBPase-2 of the PFKFB3 gene is assumed to play a critical role in tumorigenesis. We investigated the PFKFB3 expression in 40 human astrocytic gliomas and 20 non-neoplastic brain tissue specimens. The PFKFB3 protein levels were markedly elevated in high-grade astrocytomas relative to low-grade astrocytomas and corresponding non-neoplastic brain tissue, whereas no significant increase of PFKFB3 mRNA was observed in high-grade astrocytomas when compared with control tissue. In the group of glioblastomas the PFKFB3 protein inversely correlates with EGFR expression. The findings demonstrate that PFKFB3 up-regulation is a hallmark of high-grade astrocytomas offering an explanation for high glycolytic flux and lactate production in these tumors.


Asunto(s)
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Fosfofructoquinasa-2/metabolismo , Regulación hacia Arriba/fisiología , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Fosfofructoquinasa-2/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Mol Cell ; 27(3): 339-52, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17679086

RESUMEN

RNA helicases comprise a large family of enzymes that are thought to utilize the energy of NTP binding and hydrolysis to remodel RNA or RNA-protein complexes, resulting in RNA duplex strand separation, displacement of proteins from RNA molecules, or both. These functions of RNA helicases are required for all aspects of cellular RNA metabolism, from bacteria to humans. We provide a brief overview of the functions of RNA helicases and highlight some of the recent key advances that have contributed to our current understanding of their biological function and mechanism of action.


Asunto(s)
ARN Helicasas/fisiología , Animales , Humanos , Empalme del ARN , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...