Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Emerg Infect Dis ; 29(12): 2524-2527, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796297

RESUMEN

Hepatitis A virus (HAV) is a common human pathogen found exclusively in primates. In a molecular and serologic study of 64 alpacas in Bolivia, we detected RNA of distinct HAV in ≈9% of animals and HAV antibodies in ≈64%. Complete-genome analysis suggests a long association of HAV with alpacas.


Asunto(s)
Camélidos del Nuevo Mundo , Virus de la Hepatitis A , Animales , Humanos , Virus de la Hepatitis A/genética , Bolivia/epidemiología , Genotipo , ARN
2.
J Clin Virol ; 168: 105583, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716229

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is a leading cause of acute hepatitis and can cause chronic infections in immunocompromised patients. Although HEV infections can be treated with ribavirin, antiviral efficacy is hampered by resistance mutations, normally detected by virus sequencing. OBJECTIVES: High-throughput sequencing (HTS) allows for cost-effective complete viral genome sequencing. This enables the discovery and delineation of new subtypes, and revised the recognition of quasispecies and putative resistance mutations. However, HTS is challenged by factors including low viral load, sample degradation, high host background, and high viral diversity. STUDY DESIGN: We apply complete genome sequencing strategies for HEV, including a targeted enrichment approach. These approaches were used to investigate sequence diversity in HEV RNA-positive animal and human samples and intra-host diversity in a chronically infected patient. RESULTS: Here, we describe the identification of potential novel subtypes in a blood donation (genotype 3) and in an ancient livestock sample (genotype 7). In a chronically infected patient, we successfully investigated intra-host virus diversity, including the presence of ribavirin resistance mutations. Furthermore, we found convincing evidence for HEV compartmentalization, including the central nervous system, in this patient. CONCLUSIONS: Targeted enrichment of viral sequences enables the generation of complete genome sequences from a variety of difficult sample materials. Moreover, it enables the generation of greater sequence coverage allowing more advanced analyses. This is key for a better understanding of virus diversity. Investigation of existing ribavirin resistance, in the context of minorities or compartmentalization, may be critical in treatment strategies of HEV patients.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Humanos , Virus de la Hepatitis E/genética , Ribavirina/farmacología , Ribavirina/uso terapéutico , Antivirales/efectos adversos , Infección Persistente , Genotipo , Secuenciación Completa del Genoma
3.
Virus Evol ; 9(1): vead024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091898

RESUMEN

Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species. Complete genome sequence analyses define a new AdV species with a particularly large gene encoding a protein of unknown function in the early gene region 3. Unexpectedly, the new AdV species is not most similar to human or other simian AdVs but to bat adenovirus C. Genome characterisation shows signals of virus-host codivergence in non-structural genes, which show lower diversity than structural genes. Outside a lemur species mixing zone, recombination less frequently separates structural genes, as in human adenovirus C. The evolutionary history of lemur AdVs likely involves both a host switch and codivergence with the lemur hosts.

4.
Insights Imaging ; 13(1): 61, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347510

RESUMEN

BACKGROUND: During the current severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic, computed tomography (CT) has become widely used in patients with suspected or known coronavirus disease 2019 (COVID-19). This prospective observational study in 28 invasively ventilated and 18 non-invasively ventilated patients with confirmed SARS-CoV-2 contamination aims at investigating SARS-CoV-2 contamination of CT scanner surfaces and its infectiousness. METHODS: Swab sampling of the CT table and gantry before and after CT examinations was performed. Additionally, the CT ventilation system air grid was wiped off after each examination. Real-time reverse-transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 RNA (ribonucleic acid) and viral cell culture were performed in the virology core lab. RESULTS: After examination of non-invasively ventilated or non-ventilated patients, SARS-CoV-2 RNA was found in 11.1% (4/36) on patient near surfaces (CT table and gantry) and in 16.7% (3/18) on the CT air grid respectively after examination of invasively ventilated patients in 5.4% (3/56) on CT table and gantry and 7.1% (2/28) on the CT air grid. Surface contamination was more common in non-invasively ventilated or non-ventilated patients with a high viral load who were actively coughing. RT-PCR cycle threshold (Ct) was high (35.96-39.31) in all positive samples and no positive viral cell culture was found. CONCLUSION: Our study suggests that CT scanner surface contamination with SARS-CoV-2 is considerable and more common after examination of non-invasively ventilated or non-ventilated patients compared to invasively ventilated patients. However, no viral cell culture positivity was found, hence the infectious potential seems low.

5.
Transbound Emerg Dis ; 69(4): e71-e81, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34331389

RESUMEN

Dog-mediated rabies is responsible for approximately 60,000 human deaths annually worldwide. Although dog slaughter for human consumption and its potential risk for rabies transmission has been reported, mainly in some parts of Western Africa and South-East Asia, more information on this and factors that influence dog meat consumption is required for a better understanding from places like Ghana where the practice is common. We tested 144 brain tissues from apparently healthy dogs slaughtered for human consumption for the presence of rabies viruses using a Lyssavirus-specific real-Time RT-PCR. Positive samples were confirmed by virus genome sequencing. We also administered questionnaires to 541 dog owners from three regions in Ghana and evaluated factors that could influence dog meat consumption. We interacted with butchers and observed slaughtering and meat preparation procedures. Three out of 144 (2.1%) brain tissues from apparently healthy dogs tested positive for rabies virus RNA. Two of the viruses with complete genomes were distinct from one another, but both belonged to the Africa 2 lineage. The third virus with a partial genome fragment had high sequence identity to the other two and also belonged to the Africa 2 lineage. Almost half of the study participants practiced dog consumption [49% (265/541)]. Males were almost twice (cOR = 1.72, 95% CI (1.17-2.52), p-value = .006) as likely to consume dog meat compared to females. Likewise, the Frafra tribe from northern Ghana [cOR = 825.1, 95% CI (185.3-3672.9), p-value < .0001] and those with non-specific tribes [cOR = 47.05, 95% CI (10.18-217.41), p-value < .0001] presented with higher odds of dog consumption compared to Ewes. The butchers used bare hands in meat preparation. This study demonstrates the presence of rabies virus RNA in apparently healthy dogs slaughtered for human consumption in Ghana and suggests a potential risk for rabies transmission. Veterinary departments and local assemblies are recommended to monitor and regulate this practice.


Asunto(s)
Enfermedades de los Perros , Virus de la Rabia , Rabia , Enfermedades de las Ovejas , Animales , Enfermedades de los Perros/epidemiología , Perros , Femenino , Ghana/epidemiología , Humanos , Masculino , Carne , ARN , Rabia/epidemiología , Rabia/veterinaria , Virus de la Rabia/genética , Ovinos
6.
Science ; 373(6551)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34035154

RESUMEN

Two elementary parameters for quantifying viral infection and shedding are viral load and whether samples yield a replicating virus isolate in cell culture. We examined 25,381 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Germany, including 6110 from test centers attended by presymptomatic, asymptomatic, and mildly symptomatic (PAMS) subjects, 9519 who were hospitalized, and 1533 B.1.1.7 lineage infections. The viral load of the youngest subjects was lower than that of the older subjects by 0.5 (or fewer) log10 units, and they displayed an estimated ~78% of the peak cell culture replication probability; in part this was due to smaller swab sizes and unlikely to be clinically relevant. Viral loads above 109 copies per swab were found in 8% of subjects, one-third of whom were PAMS, with a mean age of 37.6 years. We estimate 4.3 days from onset of shedding to peak viral load (108.1 RNA copies per swab) and peak cell culture isolation probability (0.75). B.1.1.7 subjects had mean log10 viral load 1.05 higher than that of non-B.1.1.7 subjects, and the estimated cell culture replication probability of B.1.1.7 subjects was higher by a factor of 2.6.


Asunto(s)
Infecciones Asintomáticas , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Prueba de Ácido Nucleico para COVID-19 , Células CACO-2 , Niño , Preescolar , Femenino , Alemania , Hospitalización , Humanos , Lactante , Masculino , Persona de Mediana Edad , Probabilidad , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Carga Viral , Replicación Viral , Esparcimiento de Virus , Adulto Joven
7.
Lancet Microbe ; 2(7): e311-e319, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846704

RESUMEN

BACKGROUND: Antigen point-of-care tests (AgPOCTs) can accelerate SARS-CoV-2 testing. As some AgPOCTs have become available, interest is growing in their utility and performance. Here we aimed to compare the analytical sensitivity and specificity of seven commercially available AgPOCT devices. METHODS: In a single-centre, laboratory evaluation study, we compared AgPOCT products from seven suppliers: the Abbott Panbio COVID-19 Ag Rapid Test, the RapiGEN BIOCREDIT COVID-19 Ag, the Healgen Coronavirus Ag Rapid Test Cassette (Swab), the Coris BioConcept COVID-19 Ag Respi-Strip, the R-Biopharm RIDA QUICK SARS-CoV-2 Antigen, the nal von minden NADAL COVID-19 Ag Test, and the Roche-SD Biosensor SARS-CoV Rapid Antigen Test. Tests were evaluated on recombinant SARS-CoV-2 nucleoprotein, cultured endemic and emerging coronaviruses, stored respiratory samples with known SARS-CoV-2 viral loads, stored samples from patients with respiratory pathogens other than SARS-CoV-2, and self-sampled swabs from healthy volunteers. We estimated analytical sensitivity in terms of approximate viral concentrations (quantified by real-time RT-PCR) that yielded positive AgPOCT results, and specificity in terms of propensity to generate false-positive results. FINDINGS: In 138 clinical samples with quantified SARS-CoV-2 viral load, the 95% limit of detection (concentration at which 95% of test results were positive) in six of seven AgPOCT products ranged between 2·07 × 106 and 2·86 × 107 copies per swab, with an outlier (RapiGEN) at 1·57 × 1010 copies per swab. The assays showed no cross-reactivity towards cell culture or tissue culture supernatants containing any of the four endemic human coronaviruses (HCoV­229E, HCoV­NL63, HCoV­OC43, or HCoV­HKU1) or MERS-CoV, with the exception of the Healgen assay in one repeat test on HCoV-HKU1 supernatant. SARS-CoV was cross-detected by all assays. Cumulative specificities among stored clinical samples with non-SARS-CoV-2 infections (n=100) and self-samples from healthy volunteers (n=35; cumulative sample n=135) ranged between 98·5% (95% CI 94·2-99·7) and 100·0% (97·2-100·0) in five products, with two outliers at 94·8% (89·2-97·7; R-Biopharm) and 88·9% (82·1-93·4; Healgen). False-positive results did not appear to be associated with any specific respiratory pathogen. INTERPRETATION: The sensitivity range of most AgPOCTs overlaps with SARS-CoV-2 viral loads typically observed in the first week of symptoms, which marks the infectious period in most patients. The AgPOCTs with limit of detections that approximate virus concentrations at which patients are infectious might enable shortcuts in decision making in various areas of health care and public health. FUNDING: EU's Horizon 2020 research and innovation programme, German Ministry of Research, German Federal Ministry for Economic Affairs and Energy, German Ministry of Health, and Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antígenos Virales/análisis , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Sistemas de Atención de Punto , SARS-CoV-2/genética
8.
Microorganisms ; 9(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918332

RESUMEN

BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.

10.
Nature ; 581(7809): 465-469, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32235945

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.


Asunto(s)
Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Hospitalización , Neumonía Viral/inmunología , Neumonía Viral/virología , Seroconversión , Replicación Viral , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/inmunología , Secuencia de Bases , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Sangre/virología , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/diagnóstico , Heces/química , Heces/virología , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Pulmón/virología , Pandemias , Faringe/virología , Neumonía Viral/diagnóstico , Polimorfismo de Nucleótido Simple/genética , ARN Viral/análisis , SARS-CoV-2 , Esputo/virología , Orina/virología , Proteínas del Envoltorio Viral/genética , Carga Viral/inmunología , Esparcimiento de Virus
11.
Euro Surveill ; 25(3)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31992387

RESUMEN

BACKGROUND: The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. AIM: We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. METHODS: Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. RESULTS: The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project. CONCLUSION: The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.


Asunto(s)
Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Coronavirus/clasificación , Coronavirus/genética , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/métodos , Coronavirus/aislamiento & purificación , Brotes de Enfermedades , Humanos , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
12.
Lancet Planet Health ; 3(12): e521-e528, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31843456

RESUMEN

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonotic pathogen endemic to the Arabian Peninsula. Dromedary camels are a likely source of infection and the virus probably originated in Africa. We studied the genetic diversity, geographical structure, infection prevalence, and age-associated prevalence among camels at the largest entry port of camels from Africa into the Arabian Peninsula. METHODS: In this prospective genomic study, we took nasal samples from camels imported from Sudan and Djibouti into the Port of Jeddah in Jeddah, Saudi Arabia, over an almost 2-year period and local Arabian camels over 2 months in the year after surveillance of the port. We determined the prevalence of MERS-CoV infection, age-associated patterns of infection, and undertook phylogeographical and migration analyses to determine intercountry virus transmission after local lineage establishment. We compared all virological characteristics between the local and imported cohorts. We compared major gene deletions between African and Arabian strains of the virus. Reproductive numbers were inferred with Bayesian birth death skyline analyses. FINDINGS: Between Aug 10, 2016, and May 3, 2018, we collected samples from 1196 imported camels, of which 868 originated from Sudan and 328 from Djibouti, and between May 1, and June 25, 2018, we collected samples from 472 local camels, of which 189 were from Riyadh and 283 were from Jeddah, Saudi Arabia. Virus prevalence was higher in local camels than in imported camels (224 [47·5%] of 472 vs 157 [13·1%] of 1196; p<0·0001). Infection prevalence peaked among camels older than 1 year and aged up to 2 years in both groups, with 255 (66·9%) of 381 positive cases in this age group. Although the overall geographical distribution of the virus corresponded with the phylogenetic tree topology, some virus exchange was observed between countries corresponding with trade routes in the region. East and west African strains of the virus appear to be geographically separated, with an origin of west African strains in east Africa. African strains of the virus were not re-sampled in Saudi Arabia despite sampling approximately 1 year after importation from Africa. All local Arabian samples contained strains of the virus that belong to a novel recombinant clade (NRC) first detected in 2014 in Saudi Arabia. Reproduction number estimates informed by the sequences suggest sustained endemicity of NRC, with a mean Re of 1·16. INTERPRETATION: Despite frequent imports of MERS-CoV with camels from Africa, African lineages of MERS-CoV do not establish themselves in Saudi Arabia. Arabian strains of the virus should be tested for changes in virulence and transmissibility. FUNDING: German Ministry of Research and Education, EU Horizon 2020, and Emerging Diseases Clinical Trials Partnership.


Asunto(s)
Camelus , Infecciones por Coronavirus/veterinaria , Genoma Viral , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Zoonosis/epidemiología , África , Animales , Teorema de Bayes , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Prevalencia , Estudios Prospectivos , Arabia Saudita/epidemiología , Zoonosis/virología
13.
PLoS One ; 12(1): e0169067, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28081564

RESUMEN

Enteroviruses (EVs) belong to the family Picornaviridae and are responsible for mild to severe diseases in mammals including humans and non-human primates (NHP). Simian EVs were first discovered in the 1950s in the Old World Monkeys and recently in wild chimpanzee, gorilla and mandrill in Cameroon. In the present study, we screened by PCR EVs in 600 fecal samples of wild apes and monkeys that were collected at four sites in Gabon. A total of 32 samples were positive for EVs (25 from mandrills, 7 from chimpanzees, none from gorillas). The phylogenetic analysis of VP1 and VP2 genes showed that EVs identified in chimpanzees were members of two human EV species, EV-A and EV-B, and those identified in mandrills were members of the human species EV-B and the simian species EV-J. The identification of two novel enterovirus types, EV-B112 in a chimpanzee and EV-B113 in a mandrill, suggests these NHPs could be potential sources of new EV types. The identification of EV-B107 and EV90 that were previously found in humans indicates cross-species transfers. Also the identification of chimpanzee-derived EV110 in a mandrill demonstrated a wide host range of this EV. Further research of EVs in NHPs would help understanding emergence of new types or variants, and evaluating the real risk of cross-species transmission for humans as well for NHPs populations.


Asunto(s)
Enfermedades del Simio Antropoideo , Infecciones por Enterovirus , Enterovirus , Gorilla gorilla/virología , Mandrillus/virología , Pan troglodytes/virología , Filogenia , Animales , Enfermedades del Simio Antropoideo/genética , Enfermedades del Simio Antropoideo/virología , Enterovirus/genética , Enterovirus/aislamiento & purificación , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/veterinaria , Infecciones por Enterovirus/virología , Humanos
14.
Bull World Health Organ ; 94(12): 880-892, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27994281

RESUMEN

OBJECTIVE: To examine the diagnostic performance of real-time reverse transcription (RT)-polymerase chain reaction (PCR) assays for Zika virus detection. METHODS: We compared seven published real-time RT-PCR assays and two new assays that we have developed. To determine the analytical sensitivity of each assay, we constructed a synthetic universal control ribonucleic acid (uncRNA) containing all of the assays' target regions on one RNA strand and spiked human blood or urine with known quantities of African or Asian Zika virus strains. Viral loads in 33 samples from Zika virus-infected patients were determined by using one of the new assays. FINDINGS: Oligonucleotides of the published real-time RT-PCR assays, showed up to 10 potential mismatches with the Asian lineage causing the current outbreak, compared with 0 to 4 mismatches for the new assays. The 95% lower detection limit of the seven most sensitive assays ranged from 2.1 to 12.1 uncRNA copies/reaction. Two assays had lower sensitivities of 17.0 and 1373.3 uncRNA copies/reaction and showed a similar sensitivity when using spiked samples. The mean viral loads in samples from Zika virus-infected patients were 5 × 104 RNA copies/mL of blood and 2 × 104 RNA copies/mL of urine. CONCLUSION: We provide reagents and updated protocols for Zika virus detection suitable for the current outbreak strains. Some published assays might be unsuitable for Zika virus detection, due to the limited sensitivity and potential incompatibility with some strains. Viral concentrations in the clinical samples were close to the technical detection limit, suggesting that the use of insensitive assays will cause false-negative results.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Infección por el Virus Zika/diagnóstico , Humanos , Sensibilidad y Especificidad
16.
PLoS One ; 10(8): e0136700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26301510

RESUMEN

Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.


Asunto(s)
Enterovirus Humano C/patogenicidad , Infecciones por Enterovirus/virología , Pan troglodytes/virología , Parálisis/virología , Animales , Congo , Brotes de Enfermedades , Enterovirus Humano C/aislamiento & purificación , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/microbiología , Heces/microbiología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pan troglodytes/microbiología , Parálisis/epidemiología , Parálisis/microbiología , Poliovirus/aislamiento & purificación , Poliovirus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...