Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 86(3): 033102, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25832206

RESUMEN

The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, the possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.

2.
J Phys Chem B ; 111(18): 4641-4, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17388414

RESUMEN

Room-temperature ionic liquids (RTILs) are organic salts that are characterized by low melting points. They are considered to possess a homogeneous microscopic structure. We provide the first experimental evidence of the existence of nanoscale heterogeneities in neat liquid and supercooled RTILs, such as 1-alkyl-3-methyl imidazolium-based salts, using X-ray diffraction. These heterogeneities are of the order of a few nanometers and their size is proportional to the alkyl chain length. These results provide strong support to the findings from recent molecular dynamics simulations, which proposed the occurrence of nanostructures in RTILs, as a consequence of alkyl chains segregation. Moreover, our study addresses the issue of the temperature dependence of the heterogeneities size, showing a behavior that resembles the density one only below the glass transition, thus suggesting a complex behavior above this temperature. These results will provide a novel interpretation approach for the unique chemical physical properties of RTILs.


Asunto(s)
Líquidos Iónicos/química , Temperatura , Tamaño de la Partícula , Difracción de Rayos X
3.
J Phys Chem B ; 110(42): 21357-64, 2006 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17048965

RESUMEN

A detailed investigation of the phase diagram of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF(6)]) is presented on the basis of a wide set of experimental data accessing thermodynamic, structural, and dynamical properties of this important room temperature ionic liquid (RTIL). The combination of quasi adiabatic, continuous calorimetry, wide angle neutron and X-ray diffraction, and quasi elastic neutron scattering allows the exploration of many novel features of this material. Thermodynamic and microscopic structural information is derived on both glassy and crystalline states and compared with results that recently appeared in the literature allowing direct information to be obtained on the existence of two crystalline phases that were not previously characterized and confirming the view that RTILs show a substantial degree of order (even in their amorphous states), which resembles the crystalline order. We highlight a strong connection between structure and dynamics, showing the existence of three temperature ranges in the glassy state across which both the spatial correlation and the dynamics change. The complex crystalline polymorphism in [bmim][PF(6)] also is investigated; we compare our findings with the corresponding findings for similar RTILs. These results provide a strong experimental basis for the exploration of the features of the phase diagram of RTILs and for the further study of longer alkyl chain salts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA