Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0298361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814946

RESUMEN

The pathogenesis of anal sacculitis has not been extensively investigated, although atopic dogs seem to be predisposed to the disease. The aim of this study was therefore to characterize and compare the bacterial microbiota and pro-inflammatory cytokines in the anal sacs of dogs from three groups (healthy dogs, untreated atopic dogs and atopic dogs receiving antipruritic treatment or allergen-specific immunotherapy) in order to determine whether changes could be at the origin of anal sacculitis in atopic dogs. Bacterial populations of anal sac secretions from fifteen healthy dogs, fourteen untreated and six treated atopic dogs were characterized by sequencing the V4 region of the 16S rRNA gene using Illumina technology. Proinflammatory cytokines were analyzed with the Luminex multiplex test. Community membership and structure were significantly different between the anal sacs of healthy and untreated atopic dogs (P = 0.002 and P = 0.003, respectively) and between those of untreated and treated atopic dogs (P = 0.012 and P = 0.017, respectively). However, the community structure was similar in healthy and treated atopic dogs (P = 0.332). Among the proinflammatory cytokines assessed, there was no significant difference between groups, except for interleukin 8 which was higher in the anal sacs of untreated atopic dogs compared to treated atopic dogs (P = 0.02), and tumor necrosis factor-alpha which was lower in the anal sacs of healthy dogs compared to treated atopic dogs (P = 0.04). These results reveal a dysbiosis in the anal sacs of atopic dogs, which may partially explain the predisposition of atopic dogs to develop bacterial anal sacculitis. Treatments received by atopic dogs (oclacitinib, desloratadine and allergen-specific immunotherapy) shift the microbiota of the anal sacs towards that of healthy dogs. Further studies are required to identify significant cytokines contributing to anal sacculitis in atopic dogs.


Asunto(s)
Sacos Anales , Citocinas , Enfermedades de los Perros , Animales , Perros , Citocinas/metabolismo , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/tratamiento farmacológico , Sacos Anales/microbiología , Masculino , Microbiota , Femenino , ARN Ribosómico 16S/genética , Dermatitis Atópica/veterinaria , Dermatitis Atópica/microbiología , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Estudios de Casos y Controles , Bacterias/clasificación , Bacterias/genética
2.
PLoS One ; 19(1): e0296844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261585

RESUMEN

The porcine pathogen and zoonotic agent Streptococcus suis induces an exacerbated inflammation in the infected hosts that leads to sepsis, meningitis, and sudden death. Several virulence factors were described for S. suis of which the capsular polysaccharide (CPS) conceals it from the immune system, and the suilysin exhibits cytotoxic activity. Although neutrophils are recruited rapidly upon S. suis infection, their microbicidal functions appear to be poorly activated against the bacteria. However, during disease, the inflammatory environment could promote neutrophil activation as mediators such as the granulocyte colony-stimulating factor granulocyte (G-CSF) and the granulocyte-macrophages colony-stimulating factor (GM-CSF) prime neutrophils and enhance their responsiveness to bacterial detection. Thus, we hypothesized that CPS and suilysin prevent an efficient activation of neutrophils by S. suis, but that G-CSF and GM-CSF rescue neutrophil activation, leading to S. suis elimination. We evaluated the functions of porcine neutrophils in vitro in response to S. suis and investigated the role of the CPS and suilysin on cell activation using isogenic mutants of the bacteria. We also studied the influence of G-CSF and GM-CSF on neutrophil response to S. suis by priming the cells with recombinant proteins. Our study confirmed that CPS prevents S. suis-induced activation of most neutrophil functions but participates in the release of neutrophil-extracellular traps (NETs). Priming with G-CSF did not influence cell activation, but GM-CSF strongly promote IL-8 release, indicating its involvement in immunomodulation. However, priming did not enhance microbicidal functions. Studying the interaction between S. suis and neutrophils-first responders in host defense-remains fundamental to understand the immunopathogenesis of the infection and to develop therapeutical strategies related to neutrophils' defense against this bacterium.


Asunto(s)
Factores Estimulantes de Colonias , Streptococcus suis , Animales , Porcinos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neutrófilos , Factor Estimulante de Colonias de Granulocitos
3.
Microorganisms ; 9(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835517

RESUMEN

Streptococcus suis is a swine pathogen and zoonotic agent responsible for economic losses to the porcine industry. Infected animals may develop meningitis, arthritis, endocarditis, sepsis and/or sudden death. The pathogenesis of the infection implies that bacteria breach mucosal host barriers and reach the bloodstream, where they escape immune-surveillance mechanisms and spread throughout the organism. The clinical manifestations are mainly the consequence of an exacerbated inflammation, defined by an exaggerated production of cytokines and recruitment of immune cells. Among them, neutrophils arrive first in contact with the pathogens to combat the infection. Neutrophils initiate and maintain inflammation, by producing cytokines and deploying their arsenal of antimicrobial mechanisms. Furthermore, neutrophilic leukocytosis characterizes S. suis infection, and lesions of infected subjects contain a large number of neutrophils. Therefore, this cell type may play a role in host defense and/or in the exacerbated inflammation. Nevertheless, a limited number of studies addressed the role or functions of neutrophils in the context of S. suis infection. In this review, we will explore the literature about S. suis and neutrophils, from their interaction at a cellular level, to the roles and behaviors of neutrophils in the infected host in vivo.

4.
Immunobiology ; 225(4): 151979, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32747024

RESUMEN

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent. Infections induce an exacerbated inflammation that can result in sudden death (septic shock) and meningitis. Though neutrophilic leukocytosis characterizes S. suis infection, the mediators involved are poorly understood. Among them, granulocyte-colony stimulating factor (G-CSF), a pro-inflammatory cytokine, triggers proliferation of neutrophil progenitors and neutrophil mobilization. However, the systemic production of G-CSF induced during S. suis infection, the cell types involved, and the underlying mechanisms remain unknown. In a S. suis serotype 2 mouse model of systemic infection, plasma levels of G-CSF rapidly increased after infection. S. suis activation of DCs and macrophages resulted in high (> 1000 pg/mL) and comparable production levels of G-CSF, as measured by ELISA. By using mutant strains deficient in capsular polysaccharide (CPS) or lipoprotein maturation in combination with purified lipoteichoic acid (LTA) from the latter mutant strain, it was showed that G-CSF production is mainly mediated by S. suis lipoproteins. The Toll-like receptor (TLR) pathway via myeloid differentiation primary response 88 (MyD88) is required for G-CSF production by DCs and macrophages following S. suis activation, with a partial involvement of TLR2. On the other hand, TLR2-independant G-CSF production induced by S. suis requires internalization and bacterial DNA might play a role in this pathway. Finally, these signals activated nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways leading to G-CSF production. In conclusion, this study demonstrated for the first time that S. suis induces G-CSF production in vivo and DCs and macrophages are key cellular sources of this cytokine mediator, mainly via the binding of lipoproteins to TLR2. The CPS significantly reduced this activation, confirming the powerful role of this component in S. suis virulence. As such, this study contributes to better understand how DCs and macrophages produce G-CSF in response to S. suis, and potentially to other streptococci.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/inmunología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/sangre , Interacciones Huésped-Patógeno , Ratones , Transducción de Señal , Streptococcus suis/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...